

NEET 2021 Chemistry P6

49. Three resistors having resistances r_1 , r_2 and r_3 are connected as shown in the given circuit. The ratio of currents in terms of resistances used in the circuit is:

(1) $\frac{r_2}{r_1}$

(2) $\frac{r_1}{r_2 + r_3}$

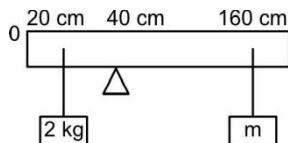
(3) $\frac{r_2}{\frac{r_1}{2} + \frac{r_3}{3}}$

(4) $\frac{r_1}{r_1 + r_2}$

Ans: (3) r_2

Sol: $\frac{i_2}{r_3} = \frac{i_3}{r_2}$ and $\frac{i_2}{i_1} = \frac{i_3}{i_1}$

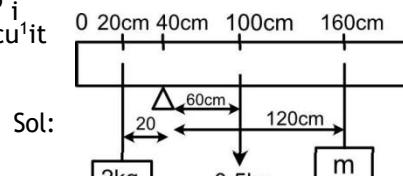
$$\frac{i_2}{i_3} = 1 = \frac{r_3}{r_2}$$


$$\frac{i_2 + i_3}{i_1} = \frac{r_2}{r_2}$$

$$\frac{i_1}{i_3} = \frac{r_2 + r_3}{r_2}$$

$$\frac{i_3}{i_1} = \frac{r_2}{r_2 + r_3}$$

$$\frac{r_2}{r_2 + r_3}$$


50. A uniform rod of length 200 cm and mass 500 g is balanced on a wedge placed at 40 cm mark. A mass of 2 kg is suspended from the rod at 20 cm and another unknown mass 'm' is suspended from the rod at 160 cm mark as shown in the figure. Find the value of 'm' such that the rod is in equilibrium. ($g = 10 \text{ m/s}^2$)

(1) $\frac{1}{12} \text{ kg}$

(2) $\frac{1}{2} \text{ kg}$

(3) $\frac{1}{3} \text{ kg}$

From principle of moments

2 20 0.5 60 m 120

2 1.5 6m

0.5 6m

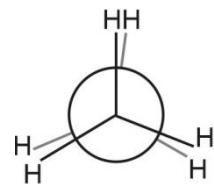
$m = \frac{1}{12} \text{ kg}$

Chemistry (SECTION- A)

51. Dihedral angle of least stable conformer of ethane is :

(1) 0

(2) 120


(3) 180

(4) 60

Ans: (1)

Sol: Eclipsed conformer is highly unstable

Dihedral angle is zero

(4) $\frac{1}{12} \text{ kg}$

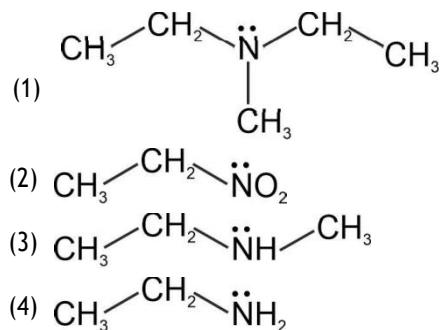
(1) $\frac{1}{12} \text{ kg}$

(2) $\frac{1}{2} \text{ kg}$

(3) $\frac{1}{3} \text{ kg}$


52. The structures of beryllium chloride in solid state and vapour phase, are :

- (1) Chain in both
- (2) Chain and dimer, respectively
- (3) Linear in both
- (4) Dimer and Linear, respectively

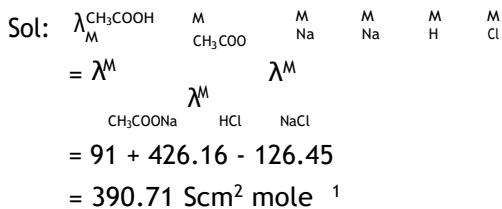

Ans: (2)

Sol: Beryllium chloride has chain structure in solid state.

Vapour phase forms chlorobridged dimer

53. Identify the compound that will react with Hinsberg's reagent to give a solid which dissolves in alkali

Ans: (4)



H - atom attached to nitrogen is highly acidic because it is attached to strong electron withdrawing $SO_2C_6H_5$ group

54. The molar conductance of $NaCl$, HCl and CH_3COONa at infinite dilution are 126.45, 426.16 and 91.0 $Scm^2 mol^{-1}$ respectively. The molar conductance of CH_3COOH at infinite dilution is. Choose the right option for your answer

(1) 540.48 $Scm^2 mol^{-1}$
 (2) 201.28 $Scm^2 mol^{-1}$
 (3) 390.71 $Scm^2 mol^{-1}$
 (4) 698.28 $Scm^2 mol^{-1}$

Ans: (3)

55. Right option for the number of tetrahedral and octahedral voids in hexagonal primitive unit cell are

(1) 12, 6
 (2) 8, 4
 (3) 6, 12
 (4) 2, 1

Ans: (4)

Sol: Number of tetrahedral voids = $2N$
 Number of octahedral voids = N
 N = effective atoms

for Hexagonal effective atoms = 6

Tetrahedral voids = 2 6 12

Octahedral voids = 6

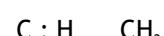
56. Tritium, a radioactive isotope of hydrogen, emits which of the following particles?

(1) Neutron (n)
 (2) Beta ()
 (3) Alpha ()
 (4) Gamma ()

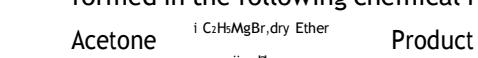
Ans: (2)

Sol: ${}_1H^3 \quad {}_2He^3 \quad {}_1e^0 \quad \beta \text{ ray}$

57. An organic compound contains 78% (by wt.) carbon and remaining percentage of hydrogen. The right option for the empirical formula of this compound is : [Atomic wt. of C is 12, H is 1]

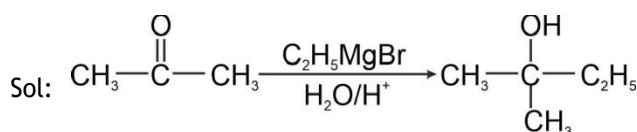

(1) CH_4
 (2) CH
 (3) CH_2
 (4) CH_3

Ans: (4)

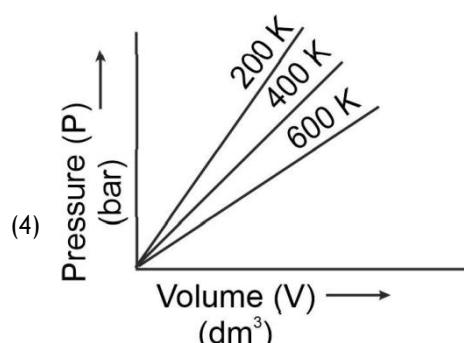
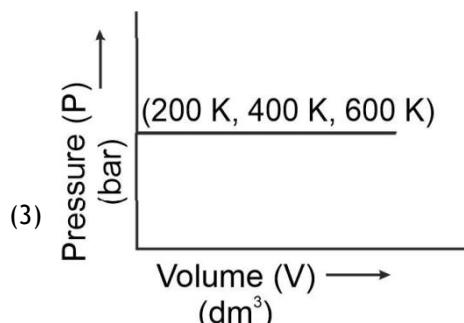
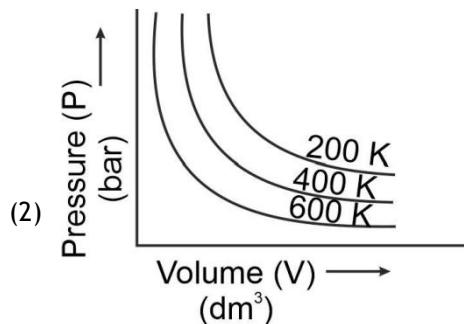
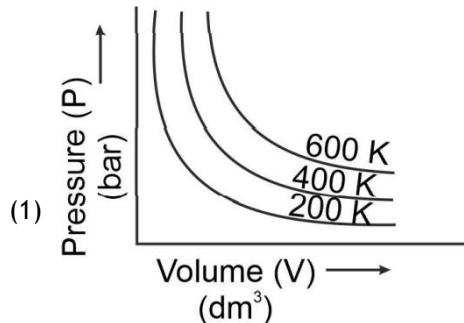

Sol: % C = 78
 % H = 22

$$C : H = \frac{78}{12} : \frac{22}{1} = 6.5 : 22$$

$$\frac{6.5}{6.5} : \frac{22}{6.5} = 1 : 3.3$$



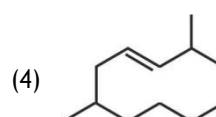
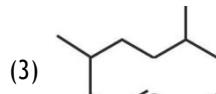
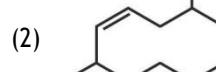
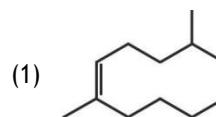
58. What is the IUPAC name of the organic compound formed in the following chemical reaction?

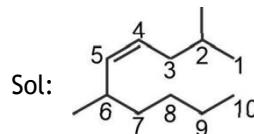
(1) 2-methyl butan-2-ol
 (2) 2-methyl propan-2-ol
 (3) pentan-2-ol
 (4) pentan-3-ol

Ans: (1)

59. Choose the correct option for graphical representation of Boyle's law, which shows a graph of pressure vs. volume of a gas at different temperatures





Ans: (1)

Sol: $P \propto \frac{1}{V}$


at constant temperature $PV = K$

Greater the temperature greater the magnitude of PV

60. The correct structure of 2,6-Dimethyl-dec-4-ene is:

Ans: (2)

61. Match List - I with List - II.

List - I

- a) PCl_5
- b) SF_6
- c) BrF_5
- d) BF_3

- i) Square pyramidal
- ii) Trigonal planar
- iii) Octahedral
- iv) Trigonal bipyramidal

Choose the correct answer from the options given below

a	b	c	d	
(1)	iv	iii	ii	i
(2)	iv	iii	i	ii
(3)	ii	iii	iv	i
(4)	iii	i	iv	ii

Ans: (2)

Sol: PCl_5 - Trigonal bipyramidal (5 bond pairs)

SF_6 - Octahedral (6 bond pairs)

BrF_5 - Square pyramidal (5 bond pairs + 1 lone pair)

BF_3 - Trigonal planar (3 bond pairs)

62. The maximum temperature that can be achieved in blast furnace is:

- (1) upto 5000 K
- (2) upto 1200 K
- (3) upto 2200 K
- (4) upto 1900 K

Ans: (3)

Sol: Temperature about 2200 K. This temperature is attained at the bottom near tuyers

63. Which one among the following is the correct option for right relationship between C_p and C_v for one mole of ideal gas?

- $C_v = RC_p$
- $C_p + C_v = R$
- $C_p - C_v = R$
- $C_p = RC_v$

Ans: (3)

Sol: For an ideal gas, $C_p - C_v = R$

64. Statement I: Acid strength increases in the order given as $\text{HF} \ll \text{HCl} \ll \text{HBr} \ll \text{HI}$

Statement II: As the size of the elements F, Cl, Br, I increases down the group, the bond strength of HF, HCl, HBr and HI decreases and so the acid strength increases.

In the light of the above statements, choose the correct answer from the options given below.

- Statement I is incorrect but Statement II is true
- Both Statement I and Statement II are true.
- Both Statement I and Statement II are false.
- Statement I is correct but Statement II is false.

Ans: (2)

Sol: Down the group acidic strength increases as bond length increases and bond strength decreases due to which ease of release of H^- increases. Acidic strength increases

65. The right option for the statement “Tyndall effect is exhibited by” is

- Urea solution
- NaCl solution
- Glucose solution
- Starch solution

Ans: (4)

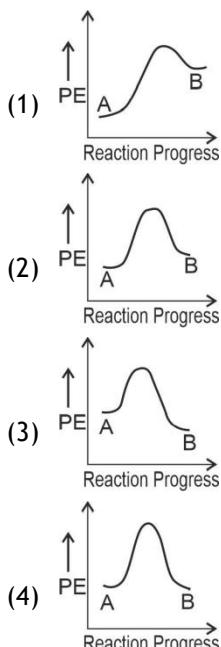
Sol: Colloidal sol shows Tyndall effect. Starch is a colloid

66. The correct option for the number of body centred unit cells in all 14 types of Bravais lattice unit cells is:

- 3
- 7
- 5
- 2

Ans: (1) Tetragonal, Orthorhombic

Sol: Cubic,


67. Which of the following reactions is the metal displacement reaction? Choose the right option.

- $2\text{Pb NO}_3 \rightarrow 2\text{PbO} + 4\text{NO}_2 + \text{O}_2$
- $2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2$
- $\text{Cr}_2\text{O}_3 + 2\text{Al} \rightarrow \text{Al}_2\text{O}_3 + 2\text{Cr}$
- $\text{Fe} + 2\text{HCl} \rightarrow \text{FeCl}_2 + \text{H}_2$

Ans: (3)

Sol: More electropositive element displaces less electropositive metal

68. For a reaction A \rightarrow B, enthalpy of reaction is -4.2 kJ mol^{-1} and enthalpy of activation is 9.6 kJ mol^{-1} . The correct potential energy profile for the reaction is shown in option.

Ans: (3)

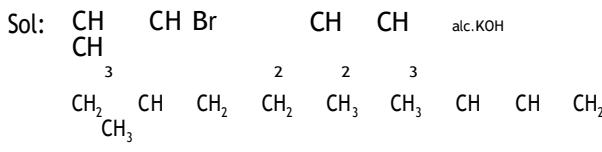
Sol: It is an exothermic reaction

For exothermic reaction, energy of reactants is greater than energy of products. By inspection option 3 is correct.

69. The $\text{p}K_b$ of dimethylamine and $\text{p}K_a$ of acetic acid are 3.27 and 4.77 respectively at $T(K)$. The correct option for the pH of dimethylammonium acetate solution is:

- 6.25
- 8.50
- 5.50
- 7.75

Ans: (4)

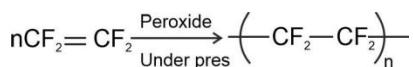

Sol: For a salt of weak acid and weak base pH does not depend on concentration of salt.

$$\text{pH} = 7 - \frac{1}{2} (\text{p}K_a + \text{p}K_b) \\ = 7 - \frac{1}{2} (4.77 + 3.27) = 7.75$$

70. The major product formed in dehydrohalogenation reaction of 2-Bromo pentane is Pent-2-ene. This product formation is based on?

- Huckel's Rule
- Saytzeff's Rule
- Hund's Rule
- Hofmann Rule

Ans: (2)


During dehydrohalogenation most stable alkene is formed by Saytzeff rule. According to Saytzeff's rule an alkene with more number of hyperconjugated hydrogens is the major product

71. Which one of the following polymers is prepared by addition polymerisation?

- Dacron
- Teflon
- Nylon-66
- Novolac

Ans: (2)

Sol: Teflon is formed by addition polymerisation of Tetrafluoro ethylene

72. The RBC deficiency is deficiency disease of:

- Vitamin B₂
- Vitamin B₁₂
- Vitamin B₆
- Vitamin B₁

Ans: (2)

Sol: Deficiency of vitamin B₁₂ causes Megaloblastic Anaemia/Pernicious anaemia

73. The following solutions were prepared by dissolving 10g of glucose (C₆H₁₂O₆) in 250ml of water (P₁), 10g of urea (CH₄N₂O) in 250 ml of water (P₂) and 10g of sucrose (C₁₂H₂₂O₁₁) in 250 ml of water (P₃). The right option for the decreasing order of osmotic pressure of these solutions is:

- P₃ > P₁ > P₂
- P₂ > P₁ > P₃
- P₁ > P₂ > P₃
- P₂ > P₃ > P₁

Ans: (2)

Sol: $\Pi = \frac{W}{STM}$

$$\Pi = \frac{1}{\text{Mol. wt}}$$

Glucose (180), Urea (60), Sucrose (342)

$$\begin{array}{l} \Pi_{\text{urea}} \quad \Pi_{\text{glucose}} \\ \Pi_{\text{sucrose}} \end{array}$$

74. A particular station of All India Radio, New Delhi, broadcasts on a frequency of 1,368 kHz(kilohertz). The wavelength of the electromagnetic radiation emitted by the transmitter is: [speed of light, c = 3.0 × 10⁸ ms⁻¹]

- 21.92 cm
- 219.3 m
- 219.2 m
- 2192 m

Ans: (2)

$$\text{Sol: } \frac{\lambda}{V} = \frac{3 \text{ ms}}{1368 \text{ } 10^3 \text{ s}^{-1}} = 219.3 \text{ m}$$

75. Noble gases are named because of their inertness towards reactivity. Identify an incorrect statement about them.

- Noble gases have large positive values of electron gain enthalpy.
- Noble gases are sparingly soluble in water.
- Noble gases have very high melting and boiling points.
- Noble gases have weak dispersion forces.

Ans: (3)

Sol: Noble gases have low melting point and boiling point due to weak London dispersion forces

76. Given below are two statements:

Statement - I : Aspirin and Paracetamol belong to the class of narcotic analgesics.

Statement - II : Morphine and Heroin are non-narcotic analgesics. In the light of the above statements, choose the correct answer from the options given below.

- Statement I is incorrect but Statement II is true.
- Both Statement I and Statement II are true.
- Both Statement I and Statement II are false.
- Statement I is correct but Statement II is false.

Ans: (3)

Sol: Aspirin and Paracetamol are non - narcotic whereas Morphine and Heroin are narcotic analgesics

77. Which one of the following methods can be used to obtain highly pure metal which is liquid at room temperature?

- Zone refining
- Electrolysis
- Chromatography
- Distillation

Ans: (4)

$$\text{P}_2 \quad \text{P}_1 \quad \text{P}_3$$

Sol: Only metal stable in liquid state at room temperature is Hg. It has non volatile impurity. Therefore, it is purified by distillation

78. The correct sequence of bond enthalpy of 'C - X' bond is

- (1) $\text{CH}_3 \text{ Cl} \text{ CH}_3 \text{ F} \text{ CH}_3 \text{ Br} \text{ CH}_3$
- (2) $\text{CH}_3 \text{ F} \text{ CH}_3 \text{ Cl} \text{ CH}_3 \text{ Br} \text{ CH}_3$
- (3) $\text{CH}_3 \text{ F} \text{ CH}_3 \text{ Cl} \text{ CH}_3 \text{ Br} \text{ CH}_3$
- (4) $\text{CH}_3 \text{ F} \text{ CH}_3 \text{ Cl} \text{ CH}_3 \text{ Br} \text{ CH}_3$

Ans: (3)

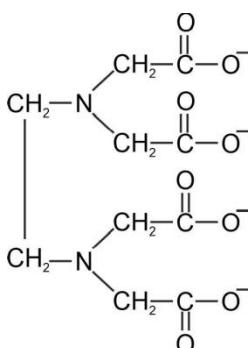
Sol: Atomic size of F < Cl < Br < I

From R - F to R - I bond length increases where as bond enthalpy decreases

79. The compound which shows metamerism is

- (1) $\text{C}_4\text{H}_{10}\text{O}$
- (2) C_5H_{12}
- (3) $\text{C}_3\text{H}_8\text{O}$
- (4) $\text{C}_3\text{H}_6\text{O}$

Ans: (1)


Sol: With the formula $\text{C}_4\text{H}_{10}\text{O}$ the possible ethers are

- (1) diethyl ether
- (2) methyl n - propylether
- (3) iso propyl methyl ether
- (1) and (2), (1) and (3) are metamers

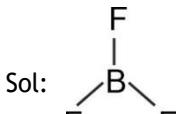
80. Ethylene diaminetetraacetate (EDTA) ion is

- (1) Tridentate ligand with three "N" donor atoms
- (2) Hexadentate ligand with four "O" and two "N" donor atoms
- (3) Unidentate ligand
- (4) Bidentate ligand with two "N" donor atoms

Ans: (2)

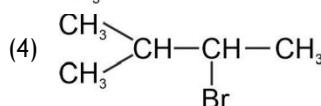
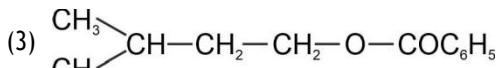
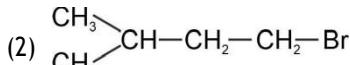
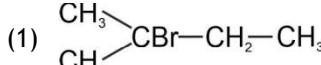
four O - atoms and two N - atoms

81. Zr (Z = 40) and Hf (Z = 72) have similar atomic and ionic radii because of

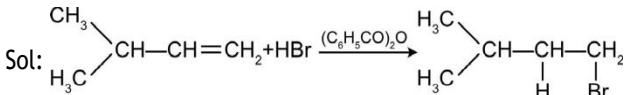

- (1) having similar chemical properties
- (2) belonging to same group
- (3) diagonal relationship
- (4) lanthanoid contraction

Ans: (4)

82. BF_3 is planar and electron deficient compound. Hybridization and number of electrons around the central atom, respectively are





- (1) sp^2 and 8
- (2) sp^3 and 4
- (3) sp^3 and 6
- (4) sp^2 and 6

Ans: (4)



sp^2 and 6

83. The major product of the following chemical reaction is

Ans: (2)

84. The incorrect statement among the following is :

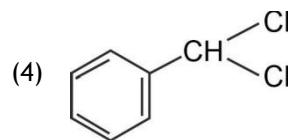
- (1) Actinoids are highly reactive metals, especially when finely divided
- (2) Actinoid contraction is greater for element to element than Lanthanoid contraction
- (3) Most of the trivalent Lanthanoid ions are colorless in the solid state
- (4) Lanthanoids are good conductors of heat and electricity

Ans: (3)

Sol: Most of Lanthanoids in trivalent state are coloured due to unpaired electrons in f - subshell. La^{3+} , Lu^{3+} are colourless

85. Among the following alkaline earth metal halides, one which is covalent and soluble in organic solvents is

- (1) Beryllium chloride
- (2) Calcium chloride
- (3) Strontium chloride
- (4) Magnesium chloride


Ans: (1)

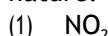
Sol: Due to high polarising power of Be^{2+} ion, all beryllium

Sol: Zr and Hf have same size due to Lanthanoid contraction

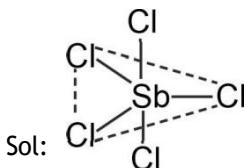
halides are predominantly covalent. They are soluble in organic solvents

(3) Red Phosphorus

(4) CaO


Ans: (4)

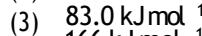
Sol: $\text{CH}_3\text{CH}_2\text{COONa}$ NaOH $\xrightarrow{\text{CaO}}$ CH_3CH_3 Na_2CO_3


Ans: (2)

This is a decarboxylation reaction

92. Which of the following molecules is non - polar in nature?

Ans: (4)



Trigonal bipyramidal

dipole moment $\mu = 0$

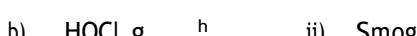
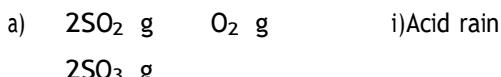
93. The slope of Arrhenius Plot $\ln k \propto \frac{1}{T}$ of first order reaction is $5 \times 10^3 \text{ K}^{-1}$. The value of E_a of the reaction is. Choose the correct option for your answer

Given $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

Ans: (2)

$$\ln K = \ln A - \frac{E_a}{RT}$$

$$y\text{-axis } C = \frac{1}{m} \text{ } x$$



$$\text{Slope} = \frac{E_a}{R}$$

$$\frac{E_a}{10^3 R} = 5$$

$$E_a = 5 \times 8.314 \text{ J K}^{-1} \text{ mole}^{-1} \times 10^3 \text{ K}$$

94. Match List - I with List - II

List - I List - II

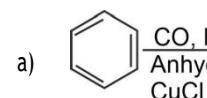
pollution

Choose the correct answer from the options given below.

Ans: (4)

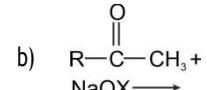
Sol: (a) $2\text{SO}_2 \text{ g}$ $\text{O}_2 \text{ g}$ Tropospheric

pollution

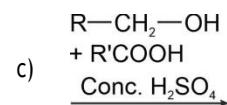

(b) $\text{HOCl} \text{ g}$ h $\text{HO} \text{ g}$ $\text{Cl} \text{ g}$ Ozone depletion

(c) $\text{CaCO}_3 \text{ g}$ $\text{H}_2\text{SO}_4 \text{ g}$ $\text{CaSO}_4 \text{ g}$ $\text{H}_2\text{O} \text{ g}$ Acid rain

(d) $\text{NO} \text{ g}$ h $\text{NO} \text{ g}$ $\text{O}_2 \text{ g}$ Photo chemical smog


95. Match List - I with List - II

List - I



List - II

i) Hell - Volhard Zelinsky reaction

ii) Gattermann - Koch reaction

iii) Haloform reaction

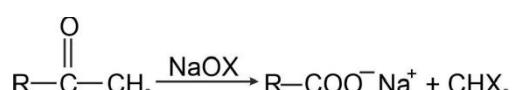
iv) Esterification

Choose the correct answer from the options given below.

a b c d

(1) ii iii iv i

(2) iv i ii iii

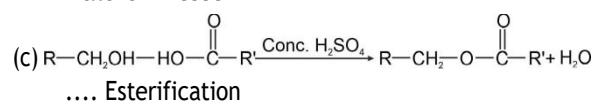

(3) iii ii i iv

(4) i iv iii ii

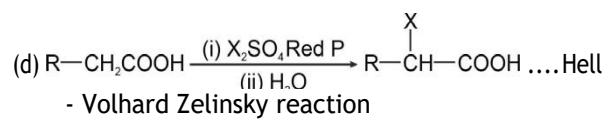
Ans: (1)

Sol: (a) $\xrightarrow[\text{Anhyd. AlCl3/CuCl}]{\text{CO, HCl}}$ $+ \text{HCl}$ Gattermann

- Koch reaction



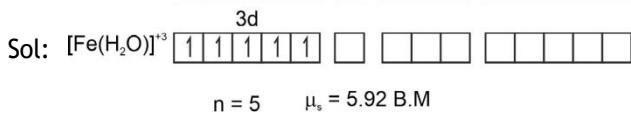
a b c d


(1) iii ii iv i
 (2) i ii iii iv
 (3) ii iii iv i
 (4) iv iii i ii

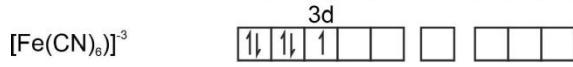
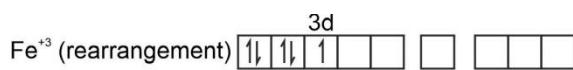
(b)

Haloform test

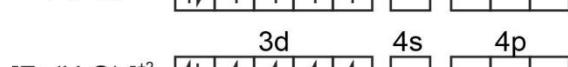
.... Esterification

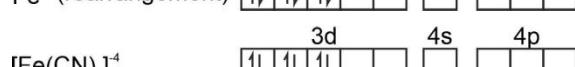

96. Match List - I with List - II

List - I	List - II
a) $\text{Fe} \begin{smallmatrix} \text{CN} \\ 3 \\ 6 \end{smallmatrix}$	i) 5.92 B.M
b) $\text{Fe} \begin{smallmatrix} \text{H} \\ 2 \\ 6 \end{smallmatrix}$	ii) 0 B.M
c) $\text{Fe} \begin{smallmatrix} \text{CN} \\ 4 \\ 6 \end{smallmatrix}$	iii) 4.90 B.M
d) $\text{Fe} \begin{smallmatrix} \text{H} \\ 2 \\ 6 \end{smallmatrix}$	iv) 1.73 B.M

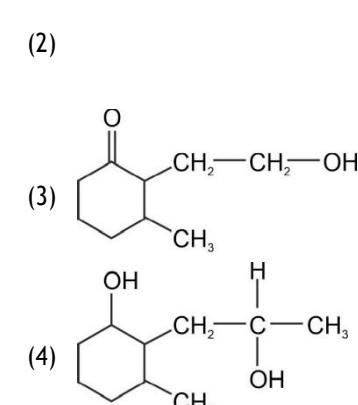
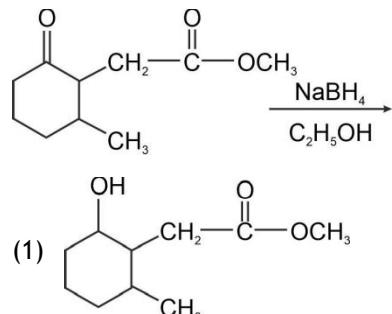


Choose the correct answer from the options given below.

a	b	c	d
(1) iv	i	ii	iii
(2) iv	ii	i	iii
(3) ii	iv	iii	i
(4) i	iii	iv	ii


Ans: (1)

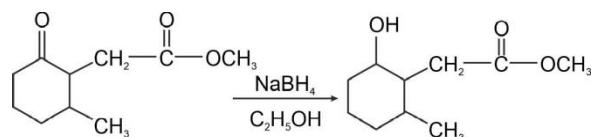

$$n = 5 \quad \mu_s = 5.92 \text{ B.M}$$

$$n = 1 \quad \mu_s = 1.732 \text{ B.M}$$

$$n = 4 \quad \mu_s = 4.9 \text{ B.M}$$

$$n = 4 \quad \mu_s = 0$$


97. The product formed in the following chemical reaction is :

Ans: (1)

Sol: NaBH_4 $\text{C}_2\text{H}_5\text{OH}$ is a weak reducing agent. It cannot reduce $-\text{COOR}$ group

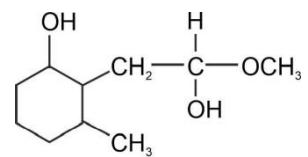
It reduces $-\text{C=O}$ to $-\text{CHOH}$ - group

98. In which of the following arrangements the given sequence is not strictly according to the properties indicated against it ?

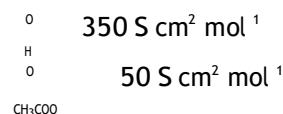
(1) $\text{CO}_2 \quad \text{SiO}_2 \quad \text{SnO}_2 \quad \text{PbO}_2$: Increasing oxidizing power

(2) $\text{HF} < \text{HCl} < \text{HBr} < \text{HI}$: Increasing acidic strength

(3) $\text{H}_2\text{O} \quad \text{H}_2\text{S} \quad \text{H}_2\text{Se} \quad \text{H}_2$: Increasing pK_a values


(4) $\text{Te} \quad \text{NH}_3 \quad \text{PH}_3$: Increasing acidic character

Ans: (3) AsH_3


SbH_3

Sol: From H_2O to H_2Te as X-H bond enthalpy decreases, acidic strength increases (K_a increases)

$$\begin{array}{cccccc}
 \text{H}_2\text{O} & \text{H}_2\text{S} & \text{H}_2\text{Se} & \text{H}_2\text{Te} & \text{K}_a \\
 \text{H}_2\text{O} & \text{H}_2\text{S} & \text{H}_2\text{Se} & \text{H}_2\text{Te} & \text{P}^{K_a}
 \end{array}$$

99. The molar conductivity of 0.007 M acetic acid is 20 S cm² mol⁻¹. What is the dissociation constant of acetic acid? Choose the correct option.

- (1) $2.50 \times 10^{-5} \text{ mol L}^{-1}$
- (2) $1.75 \times 10^{-4} \text{ mol L}^{-1}$
- (3) $2.50 \times 10^{-4} \text{ mol L}^{-1}$
- (4) $1.75 \times 10^{-5} \text{ mol L}^{-1}$

Ans: (4)

Sol: Degree of dissociation α of CH_3COOH

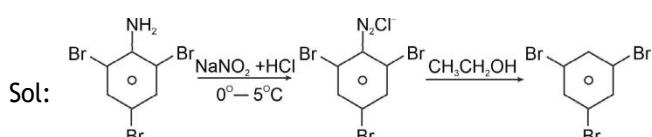
$$= \frac{c}{\alpha} = \frac{20}{350} = \frac{1}{50} = \frac{1}{20}$$

$$K_a = \frac{C\alpha^2}{1}$$

$$1 = \alpha = 1$$

$$K_a = C\alpha^2$$

$$K_a = 0.007 = \frac{1}{20} = \frac{1}{20}$$


$$K_a = 1.75 \times 10^{-5}$$

100. The reagent 'R' in the given sequence of chemical reaction is :

- (1) CuCN/KCN
- (2) H_2O
- (3) $\text{CH}_3\text{CH}_2\text{OH}$
- (4) HI

Ans: (3)

Sol:

Botany

SECTION - A

101. Match List-I with List-II.

List - I	List - II
a) Cells with active cell division capacity	(i) Vascular tissues
b) Tissue having all cells similar in structure and function	(ii) Meristematic tissue
c) Tissue having different types of cells	(iii) Sclereids
d) Dead cells with highly thickened walls and narrow lumen	(iv) Simple tissue

Select the correct answer from the options given below.

a	b	c	d
(1) iii	ii	iv	i
(2) ii	iv	i	iii
(3) iv	iii	ii	i
(4) i	ii	iii	iv

Ans: (2)

Sol: Cells with active cell division - Meristematic tissue

Tissue having all cells similar in structure and function - Simple tissue

Tissue having different types of cells - Vascular tissues

Dead cells with highly thickened walls and narrow lumen - Sclereids

102. Which of the following is an incorrect statement?

- (1) Nuclear pores act as passages for proteins and RNA molecules in both directions between nucleus and cytoplasm.
- (2) Mature sieve tube elements possess a conspicuous nucleus and usual cytoplasmic organelles.
- (3) Microbodies are present both in plant and animal cells.
- (4) The perinuclear space forms a barrier between the materials present inside the nucleus and that of the cytoplasm.

Ans: (2)

Sol: Mature sieve tube elements do not have nucleus but have cytoplasm. (Anucleated living cells)