

www.ntnews.com, www.facebook.com/ntnipuna

III

టెట్ ప్రత్యేకం

శ**నివారం** 7 మే 2022

దేనిని సముద్రపు ఆకుకూరగా వ్యవహరిస్తారు? హిందుస్తాన్ యాంటీబయాటిక్ ప్లాంట్ ఎక్కడ ఏర్పాటుచేశారు? నేషనల్ స్కాల్ ఇండస్టీస్ కార్పొరేషన్(NSIC) ఎప్పడు స్థాపించారు? కౌన్సిల్ ఫర్ అడ్వాన్స్మెంట్ ఆఫ్ రూరల్ టెక్నాలజీ ఎప్పడు ఏర్పాటు చేశారు.

1986

# X CLASS MATHEMATICS

Imp formulas and definitions AT GLANCE

#### 1.REAL NUMBERS

**Rational numbers**: The numbers which can be written in the form of  $\frac{p}{a}(q \neq 0)$  where p and q are integers.

**Example:** 2, -1, 0.5,  $\frac{22}{7}$ ,

**Irrational numbers**: The numbers which cannot be written in the form of  $\frac{p}{q}$  are called irrational numbers.

**Example:**  $\sqrt{2}$ ,  $\sqrt{3}$ ,  $\sqrt{15}$ ,  $\pi$ ,  $-\frac{\sqrt{2}}{\sqrt{3}}$ , 0.1011011101110..... etc.

**Note**: An irrational number between a and b is  $\sqrt{ab}$ 

 $\sqrt{p}$ ,  $\sqrt{q}$  are two irrational numbers then  $\sqrt{p+q}$  is an irrational number and  $\sqrt{p-q}$  is also irrational number. **Real numbers:** The set of rational and irrational numbers together are called real numbers.

**Example:** 2, 0, -5,  $\sqrt{27}$ ,  $\pi$ , 0.101001000......

**Euclid's division lemma**: Given positive integers a and b, there exists unique positive integers q and r satisfying a = bq + r,  $0 \le r < b$ . Where a =Dividend, b =Divisor, q = Quotient, r = remainder, so that.

Dividend = (Divisor × Quotient) + remainder.

It is a technique to calculate the Height Common Factor (HCF) of two given positive integers.

**Fundamental Theorem of Arithmetic:** Every composite number can be expressed (factorized) as a product of its primes, and this factorization is unique, apart from the order in which the prime factors occur. Let  $x = \frac{p}{q}$  be a rational number, such that the prime factorization of q is of the form  $2^n5^m$ , where n, m are non-negative integers. Then x has a decimal expansion which terminates.

Let  $x = \frac{p}{q}$  be rational number, such that the prime factorization of q is not of the form  $2^n$   $5^m$ , where n, m are non-negative integers. Then x has a decimal expansion which is non-terminating (recurring).

### Relationship between L.C.M., and H.C.F of two numbers.

For any two positive integers a and b given by

HCF (a and b) × LCM (a and b) = a × b (Exponential form) $a^x = N \ll = \infty \log_x^N = x$  (logarithmic form).

where a and N are positive real numbers,  $a \neq 1$ 

**Note:** 1.  $\sqrt{a}$  is rational, if a is a not perfect square.

**2.**  $a \pm \sqrt{b}$  is irrational, if 'b' is not perfect square.

**3.**  $\sqrt{a} \pm \sqrt{b}$  is irrational, if 'a' and 'b' are not perfect squares.



**4.** 'p' is prime number, p is a divisor of  $a^2 \ll p$  is a divisor of 'a'.

#### Properties of Logarithms:

1.  $log_a^{xy} = log_a^x + log_a^y$  (product rule)

2.  $\log \frac{\ddot{y}}{g} = \log_a^x - \log_a^y$  (quotient rule)

3.  $log_a^{x^m} = m log_a^x$  ( power rule)

**4.**  $log_a^a = 1$ 

5.  $log_a^1 = 0$ 

 $6. a^{\log^{a^N}} = N$ 

#### The last digit of $6^{100}$ is 6.

Let p be a prime number. If p divides  $a^2$ , (where  $\boldsymbol{a}$  is a positive integer) then p divides a.

2. SETS

### A collection of well-defined objects is called a Set. Set theory was developed by 'George Cantor'.

The symbol for belongs to is " $\in$ " and does not belong to is " $\notin$ ".

A set which does not contain any element in it is called empty set or null set or a void set. i.e.  $\phi$ ={ } but  $\phi \neq$  {0}.

A set is called a finite set, if it is possible to count the number of elements of that set.

The universal set is denoted by  $\mu$ .

The universal set is usually drawn by the shape of rectangles.  $A \subset B \& B \subset A \Leftrightarrow A=B$ .  $A \cap B$  is the set containing only those elements that are common in A & B.  $A \cap B = \{x: x \in A \text{ and } x \in B\},\$  $A \cup B = contains the elements that$ are either in A or in B or in both. AUB =  $\{x: x \in A \text{ or } x \in B\},\$ if,  $A \cap B = \emptyset$  then A & B are two disjoint sets then  $n(A \cap B) = 0$ . If A and B are two non-zero sets then  $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ If A & B are disjoint then  $n(A \cup B) = n(A) + n(B)$ A-B =  $\{x: x \in A \text{ and } x \notin B\},\$ 

B-A =  $\{x: x \in B \text{ and } x \notin A\}$ Every set is a subset of itself. Null set is subset of every set. If  $A \subset B$ ,  $B \subset C$  then  $A \subset C$ . If  $A \subset B$  then  $A \cup B = B$  and  $A \cap B = A$ . **Cardinal number**: The number of elements in a set is called cardinal number of the set.

**Example:** A= {x/x is a letter of the word 'MATHEMATICS"} => A= { M, A, T, H, E, I, C, S} then cardinal number of the set n(A) = 8

#### 3. POLYNOMIALS

Let x be a variable, n be a positive integer and  $a_0$   $a_1$ ,  $a_2$ , ... ...  $a_n$  be constants. Then  $f(x) = f(x) = a_n x_n + a_{n-1} x_{n-1} + \dots + a_1 x + a_0$  is called a polynomial in variable. (or)

An algebraic expression becomes a polynomial if the powers of the variable(s) are whole numbers. A polynomial does not contain the terms like  $\sqrt{x}$ ,  $x^2$ ,  $\frac{1}{x}$ ,  $x^{3/2}$ 

**Degree of a polynomial:** The highest power of the variable of the all terms of the given polynomial is that the degree term in a polynomial.

**Example:**  $p(x) = x^3 + 3x^2 - 4x$  the degree is 3.

If f(x) is a polynomial and k is any real number, then the real number obtained by replacing x by k in f(x) at x = k and is denoted by f(k).

**Zero of a polynomial:** For a polynomial, if p(x), if p(k) = 0, then k is called zero of the polynomial p(x). A polynomial of degree n can have at most n real zeroes.

# Geometrically, the zeroes of a polynomial f(x) are the x-coordinates of the points where the graph y = f(x) intersects x-axis.

For any quadratic polynomial  $ax^2 + bx + c$ ,  $a \neq 0$ , the graph of the corresponding equation  $y = ax^2 + bx + c$  has one of the two shapes either open upwards like  $\cup$  or downwards like  $\cap$ , depending on

whether a > 0 or a < 0, these curves are called *Parabolas*.

Relation between the zeros and coefficients:

For the quadratic polynomial  $p(x) = \alpha x^2 + bx + c$ ,  $\alpha \neq 0$  If  $\alpha$  and  $\beta$  are the zeroes, then

(i) sum of the zeros  $\alpha + \beta = -\frac{b}{a}$  (ii) product of the zeros =  $\alpha\beta = \frac{c}{a}$ 

For the cubic polynomial  $\mathbf{p}(\mathbf{x}) = ax^3 + bx^2 + cx + d$ ,  $\mathbf{a} \neq \mathbf{0}$ If  $\alpha$ ,  $\beta$ ,  $\gamma$  are the zeroes then  $\mathbf{a} + \mathbf{\beta} + \mathbf{\gamma} = -\frac{b}{a}$ 

 $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$ ,  $\alpha\beta\gamma = -\frac{d}{a}$ .

If  $\alpha$ ,  $\beta$ ,  $\gamma$  are the zeroes, the polynomial can be written as  $(x-\alpha)(x-\beta)(x-\gamma)=$ 

 $x^3-x^2(\alpha + \beta + \gamma) + x(\alpha\beta + \beta\gamma + \gamma\alpha) - \alpha\beta\gamma = 0$ . The graph of the quadratic polynomial is a parabola.

(i) It the graph cuts x-axis at  $(x_1,0)$  and  $(x_2,0)$  then  $x_1$  and  $x_2$  are the zeros of the polynomial. These roots are real and distinct.

(ii) It the graph touches x-axis at only one point  $(x_1,0)$  then two zeros are  $x_1$  and  $x_1$  are real and equal. (iii) If the graph does not cuts (touches) the x-axis then the parabola has no real zeros.

4. PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

An equation which can be put in the form ax+by+c=0, where a, b, c are real numbers and a,  $b \notin 0$ , is

called a linear equation in two variables x and y.

#### Nature of the lines:

- 1. If the lines intersect at a point, then the point gives the unique solution of the two equations. In this case, the pair of equations is consistent.
- 2. If the lines coincide, then there are infinitely many solutions-each point on the line being a solution. In this case, the pair of equations is dependent and consistent.
- **3.** If the lines are parallel then the pair of equations has no solution. In this case, the pair of equations is inconsistent.

B. LAXMINARAYANA M.Sc., B.Ed. Math Senior Faculty 9849386253 lnmathsir@gmail.com

