Roll No.

D-983

M. A./M. Sc. (Fourth Semester) (Main/ATKT)

EXAMINATION, May-June, 2020

MATHEMATICS

Paper First
(Functional Analysis-II)
Time : Three Hours]
[Maximum Marks : 80
Note : Attempt all Sections as directed.
Section-A
1 each

(Objective/Multiple Choice Questions)

Note : Attempt all questions.
Choose the correct answer :

1. Let T be a closed linear map of Banach space X into Banach space Y , then :
(a) T is closed
(b) T is open
(c) T is continuous
(d) All of the above
2. Let X be an arbitrary normed linear space the mapping $f: \mathrm{X} \rightarrow \mathrm{X}^{* *}$ is isometric isomorphics from X into $\mathrm{X}^{* *}$ if :
(a) It is linear
(b) It is bounded
(c) It preserves distance
(d) All of the above
3. Let X and Y be normed linear space and $D \subset X$, then linear transformation $\mathrm{T}: \mathrm{D} \rightarrow \mathrm{Y}$ is closed if and only if its graph G_{T} is :
(a) open
(b) closed
(c) bounded
(d) None of these
4. Let $\left\{\mathrm{T}_{n}\right\}$ be a sequence of continuous linear operator of Banach space X into Banach space Y such that $\lim _{n \rightarrow \infty} \mathrm{~T}_{n} x=\mathrm{T} x$ exists for every $x \in \mathrm{X}$, then T is continuous linear operator and :
(a) $\|\mathrm{T}\| \leq \lim _{n \rightarrow \infty} \inf \left\|\mathrm{~T}_{n}\right\|$
(b) $\|\mathrm{T}\| \leq \lim _{n \rightarrow \infty} \sup \left\|\mathrm{~T}_{n}\right\|$
(c) $\quad\|\mathrm{T}\| \geq \lim _{n \rightarrow \infty} \inf \left\|\mathrm{~T}_{n}\right\|$
(d) $\|\mathrm{T}\| \geq \lim _{n \rightarrow \infty} \sup \left\|\mathrm{~T}_{n}\right\|$
5. Let X be a normed space over field K and S be a linear subspace of X. Suppose that $Z \in X$ and dist $(Z, S)=d>0$, then there exist $g \in X^{*}$ such that :
(a) $g(s)=\{0\}, g(z)=d,\|g\|=1$
(b) $g(s) \neq\{0\}, g(z)=d,\|g\|=1$
(c) $g(s)=\{0\}, g(z)=d,\|g\| \neq 1$
(d) $g(s) \neq\{0\}, g(z)=d,\|g\| \neq 1$
6. Let X be a normed space, then the set of all bounded linear functional on X constitutes a normed space with the norm defined by :
(a) $\|f\|=\sup \left\{\frac{|f(x)|}{\|x\|}: x \in \mathrm{X} ; x \neq 0\right\}$
(b) $\|f\|=\sup \{|f(x)|: x \in \mathrm{X} ;\|x\|=1\}$
(c) Both (a) and (b)
(d) None of these
7. Let X and Y be normed space over the field K and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ be a boudned linear operator, then :
(a) The adjoint T^{*} is bounded linear from Y^{*} to X^{*}
(b) $\|\mathrm{T} *\|=\|\mathrm{T}\|$
(c) The mapping T of T^{*} is an isometric isomorphism of $\mathrm{B}(\mathrm{X}, \mathrm{Y})$ into $\mathrm{B}\left(\mathrm{Y}^{*}, \mathrm{X}^{*}\right)$
(d) All of the above
8. Let Y be a linear subspace of normed linear space X and let f be a functional defined on Y , then f can be extended to functional F defined on the whole space X such that :
(a) $\|f\|=\|\mathrm{F}\|$
(b) $\quad\|f\| \neq\|\mathrm{F}\|=1$
(c) $\|f\| \neq\{0\},\|\mathrm{F}\|=1$
(d) None of these
9. If x and y are any two vectors in an inner product space X, then :

$$
|<x, y>| \leq\|x\| \cdot\|y\|
$$

The above inequality is known as :
(a) Parallelogram law
(b) Cauchy-Schwarz's inequality
(c) Polarisation identity
(d) Bessel's inequality
10. A normed space is an inner product space if and only if the norm of the normed space satisfy the \qquad equation.
(a) $\|x+y\| \leq\|x\|+\|y\|$
(b) $|<x, y>| \leq\|x\| \cdot\|y\|$
(c) $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$
(d) $\langle x, y\rangle=\frac{1}{4}\left[\|x+y\|^{2}-\|x-y\|^{2}\right]$, where $K=R$
11. If A is a subset of an inner product space X, then which statement is incorrect?
(a) $\mathrm{A} \subseteq \mathrm{A}^{\perp \perp}$
(b) $\left(\mathrm{A}^{\perp}\right)^{\perp}=\mathrm{A}^{\perp \perp}$
(c) $\mathrm{A}=\mathrm{A}^{\perp \perp}$
(d) None of these
12. Let H be a Hilbert space and let $\left\{e_{i}\right\}$ be an orthonormal set in H , then :

$$
\|x\|^{2}=\Sigma\left|<x_{i} e_{i}>\right|^{2}
$$

This equality is known as :
(a) Parseval's identity
(b) Apollonius identity
(c) Holder's inequality
(d) None of these
13. Let X be an inner product space. Which is incorrect statement?
(a) If $x \perp y \Leftrightarrow y \perp x, \forall x, y \in \mathrm{X}$
(b) $x \perp 0, \forall x \in \mathrm{X}$
(c) 0 is the only vector in X which is orthogonal to itself.
(d) $\mathrm{A} \cap \mathrm{A}^{\perp}$ is neither $\{0\}$ nor ϕ i. e. $\mathrm{A} \cap \mathrm{A}^{\perp} \neq\{0\}$ or ϕ
14. A subspace M of a Hilbert space H is closed in H if :
(a) $\mathrm{M}=\mathrm{M}^{\perp \perp}$
(b) $\mathrm{H}=\mathrm{M} \oplus \mathrm{M}^{\perp}$
(c) Both (a) and (b)
(d) None of these
15. A Banach space X is said to be reflexive if it is isometrically isomorphic to :
(a) X^{*}
(b) $\mathrm{X}^{* *}$
(c) $\mathrm{X}^{* * *}$
(d) All of the above
16. Let H_{1} and H_{2} be Hilbert space and T and S are element of $B\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)$ and $\alpha \in \mathrm{K}$, then which statement is incorrect ?
(a) $(\mathrm{T}+\mathrm{S})^{*}=\mathrm{T}^{*}+\mathrm{S}^{*}$
(b) $(\mathrm{TS})^{*}=\mathrm{S}^{*} \mathrm{~T}^{*}$
(c) $\mathrm{T}^{* *}=\mathrm{T}$
(d) $(\alpha T)^{*}=\alpha T^{*}$
17. An operator T is called unitary if :
(a) $\mathrm{T}=\mathrm{T}^{*}$
(b) $\mathrm{T}^{*} \mathrm{~T}=\mathrm{TT}^{*}$
(c) $\mathrm{T}^{*} \mathrm{~T}=\mathrm{TT}^{*}=\mathrm{I}$
(d) $\left\langle\mathrm{T}_{x}, x\right\rangle \geq 0, \quad \forall x \in \mathrm{H}$
18. If T is a positive operator on a Hilbert space H , then :
(a) $\mathrm{I}+\mathrm{T}$ is non-singular
(b) $\mathrm{I}-\mathrm{T}$ is non-singular
(c) $\mathrm{I}+\mathrm{T}$ is singular
(d) None of these
19. Let $\mathrm{P} \in \mathrm{B}(\mathrm{H})$ be a projection operator, then :
(a) $\quad \mathrm{R}(\mathrm{P})$ and $\mathrm{N}(\mathrm{P})$ are closed subspace of H
(b) $\mathrm{I}-\mathrm{P}$ is a projection
(c) $\quad \mathrm{R}(\mathrm{P})=\mathrm{N}(\mathrm{I}-\mathrm{P})$
(d) All of the above
20. Which statement is incorrect?
(a) Every positive operator is self-adjoint.
(b) Every self-adjoint operator is normal.
(c) Every normal operator is unitary.
(d) Every unitary operator is normal.

Section-B

(Very Short Answer Type Questions)

Note : Attempt all questions. Answer in 2 to 3 sentences.

1. Give an example of a closed operator which is not bounded.
2. Define dual space and normed linear space.
3. Define weak sequential compactness.
4. Define inner product space.
5. If A and B are subset of inner product space X such that $\mathrm{A} \subset \mathrm{B}$ then show that $\mathrm{A}^{\perp} \supset \mathrm{B}^{\perp}$.
6. Write the statement of Riesz representation theorem.
7. Prove that every positive operator is self-adjoint.
8. Define normal operator on Hilbert space.

Section-C

(Short Answer Type Questions)

Note : Attempt all questions. Answer in 75 words.

1. Let X be a Banach space over the field K . If :

$$
\left\{\mathrm{T}_{n}\right\} \in \mathrm{B}(\mathrm{X}, \mathrm{Y})
$$

be a sequence such that :

$$
\lim _{n \rightarrow \infty} \mathrm{~T}_{n} x=\mathrm{Tx}
$$

where $x \in \mathrm{X}$ exists, then prove that :

$$
\mathrm{T} \in \mathrm{~B}(\mathrm{X}, \mathrm{Y}) .
$$

2. Show that a Banach space is reflexive if and only if its dual space is reflexive.
3. Show that in an inner product space $\mathrm{X} x \perp y$ if and only if $\|x+\alpha y\| \geq\|x\| \forall$ scalar $\alpha \forall x, y \in \mathrm{X}$.
4. Show that the linear space l^{P}, where $1 \leq \mathrm{P}<\infty$ and $\mathrm{P} \neq 2$ where norm is defined by :

$$
\begin{aligned}
\|x\|_{\mathrm{P}} & =\left(\sum\left|\xi_{i}\right|^{\mathrm{P}}\right)^{\frac{1}{\mathrm{P}}} \\
x & =\left\langle\xi_{i}\right\rangle \in l^{\mathrm{P}}
\end{aligned}
$$

is not an inner product space and hence it is not a Hilbert space.
5. Let H_{1} and H_{2} be Hilbert space and $\mathrm{T} \in \mathrm{B}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)$, then prove that:

$$
\|\mathrm{T} * \mathrm{~T}\|=\|\mathrm{T}\|^{2}=\|\mathrm{TT} *\|
$$

6. Show that the mapping :

$$
\psi: \mathrm{H} \rightarrow \mathrm{H}^{*}
$$

defined by $\psi(y)=f_{y}$, where $f_{y}(x)=\langle x, y\rangle$ is one-one onto but not linear and an isometry.
7. Show that the product of two bounded self-adjoint operators S and T on a Hilbert space H is self-adjoint if and only if the operators commute.
8. Let H be complete Hilbert space and $T \in B(H)$, then the following statements are equivalent :
(a) T is normal
(b) T^{*} is normal
(c) $\left\|\mathrm{T}^{*} x\right\|=\|\mathrm{T} x\| \forall x \in \mathrm{H}$

Section-D (Long Answer Type Questions)

5 each

Note : Attempt all questions. Answer in 150 words.

1. State and prove closed graph theorem.

Or
State and prove uniform boundedness principle.
2. Let M is a closed linear subspace of a normed linear space N and x_{0} is a vector not in M , then there exist a functional f_{0} in N^{*} such that :
and

$$
\begin{aligned}
& f_{0}(\mathrm{M}) \neq 0 \\
& f_{0}\left(x_{0}\right) \neq 0
\end{aligned}
$$

Or
State and prove closed rang theorem for Banach space.
3. Prove that every Hilbert space is reflexive.

Or
Show that a closed convex subset C of Hilbert space H contains a unique vector of smallest norm.
4. Let y be a fixed vector in Hilbert space H and let f_{y} be scalar defined by :

$$
f_{y}(x)=\langle x, y\rangle \forall x \in \mathrm{H}
$$

then show that:
i.e.

$$
f_{y} \in \mathrm{~B}(\mathrm{H}, \mathrm{~K})
$$

i.e. $\quad f_{y} \in \mathrm{H}^{*}$.

Further show that:

$$
\begin{gathered}
\|y\|=\left\|f_{y}\right\| \\
O r
\end{gathered}
$$

A bounded linear operator T on a complex Hilbert space H is unitary if and only if T is isometry and surjective.

