Roll No.

D-3751

M. A./M. Sc. (Previous) EXAMINATION, 2020

MATHEMATICS

Paper First

(Advanced Abstract Algebra)

Time : Three Hours]

[Maximum Marks : 100
Note : Attempt any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Let G be a group. Prove that if G is solvable, then every subgroup of G and homomorphic image of G are solvable. Conversely, if N is normal subgroup of G such that N and G / N are solvable then G is solvable.
(b) Find the splitting field of $f(x)=x^{4}-2 \in \mathrm{Q}[x]$ over Q and its degree of extension.
(c) Let E be an algebraic extension of a field F containing an algebraic closure $\overline{\mathrm{F}}$ of F . Then show that the following are equivalent :
(i) Every irreducible polynomial in $\mathrm{F}[x]$ that has a root in E splits into linear factors in E .
(ii) E is the splitting field of a family of polynomial in $\mathrm{F}[x]$.
(iii) Every embedding σ of E in $\overline{\mathrm{F}}$ that keeps each element of F fixed maps E onto E .

Unit-II

2. (a) Suppose that the field F has all nth root of unity and suppose that $a \neq 0$ is in F. Let $x^{n}-a \in \mathrm{~F}[x]$ and let K be its splitting field over F . Then show that :
(i) $\mathrm{K}=\mathrm{F}(u)$ where u is any root of $x^{n}-a$.
(ii) The Galois group of $x^{n}-a$ over F is abelian.
(b) If splitting field of the polynomial $x^{4}-3 x^{2}+4$ over Q is K , then find the Galois group of K over Q .
(c) Let E be a finite separable extension of a field F. Then show that the following are equivalent :
(i) E is a normal extension of F.
(ii) F is the fixed field of $G(E / F)$
(iii) $[\mathrm{E}: \mathrm{F}]=|\mathrm{G}(\mathrm{E} / \mathrm{F})|$
Unit-III
3. (a) State and prove Hilbert basis theorem.
(b) Show that ring :

$$
\mathrm{R}=\left(\begin{array}{ll}
\mathrm{Z} & \mathrm{Q} \\
0 & \mathrm{Q}
\end{array}\right)
$$

is right noetherian.
(c) Let M be a finitely generated free module over a commutative ring R. Then show that all bases of M have the same number of elements.

Unit-IV

4. (a) Let V be a vector space of polynomials of degree ≤ 3, and let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear transformation defined by :

$$
\begin{aligned}
& \mathrm{T}\left(\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3}\right)=\alpha_{0}+\alpha_{1}(x+1) \\
&+\alpha_{2}(x+1)^{2}+\alpha_{3}(x+1)^{3}
\end{aligned}
$$

Compute the matrix of T relative to bases :
(i) $\left(1, x, x^{2}, x^{3}\right)$
(ii) $\left(1,1+x, 1+x^{2}, 1+x^{3}\right)$

Denote the above matrices by A and B respectively. Find a matrix C such that $\mathrm{B}=\mathrm{CAC}^{-1}$.
(b) Let U and V be two vector spaces over a field F , of dimensions m and n respectively. Then show that Hom (U, V) is a vector space over F of dimension $m n$.
(c) Let $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ and $m(x)$ be the minimal polynomial of T over F . Show that for $0 \neq v \in \mathrm{~V}$.
(i) $\mathrm{F}[\mathrm{T}] v=\{[f(\mathrm{~T})] v \mid f(\mathrm{~T}) \in \mathrm{F}[\mathrm{T}]\}$ is a non-zero subspace of V containing v.
(ii) There exists a unique non-zero monic polynomial $m_{v}(x)$ over F such that :
(1) $\left[m_{v}(\mathrm{~T})\right] v=0$
(2) For any $f(x) \in \mathrm{F}[x], \quad[f(\mathrm{~T})] v=0 \Rightarrow$ $m_{v}(x) \mid f(x)$
(3) $m_{v}(x) \mid m(x)$
(4) $\operatorname{deg} m_{v}(x)=\operatorname{dim}_{\mathrm{F}} \mathrm{F}[\mathrm{T}]_{v}$
(A-38) P. T. O.

Unit-V
5. (a) Let R be a principal ideal domain and let M be any finitely generated R -module. Then show that :

$$
\mathrm{M} \simeq \mathrm{R}^{\mathrm{S}} \oplus \mathrm{R} / \mathrm{R} a_{1} \oplus \ldots \ldots \oplus \mathrm{R} / \mathrm{R} a_{r}
$$

a direct sum of cyclic modules, where the a_{i} are nonzero non-units and $a_{i} \mid a_{i+1}, i=1, \ldots ., r-1$.
(b) Find invariant factors, elementary divisors and the Jordan canonical form of the matrix :

$$
\left[\begin{array}{rrr}
0 & 4 & 2 \\
-3 & 8 & 3 \\
4 & -8 & -2
\end{array}\right]
$$

(c) Let $\mathrm{T} \in \operatorname{Hom}_{\mathrm{F}}(\mathrm{V}, \mathrm{V})$ and let $f_{1}(x), \ldots ., f_{n}(x)$ be the invariant factor of $\mathrm{A}-x \mathrm{I}$, where A is a matrix of T . Then show that :

$$
\mathrm{V} \simeq \frac{\mathrm{~F}[x]}{\left(f_{1}(x)\right)} \oplus \ldots \oplus \frac{\mathrm{F}[x]}{\left(f_{n}(x)\right)}
$$

