\qquad

D-3758

M. A./M. Sc. (Final) EXAMINATION, 2020

(Optional)
Paper Third (i)
(Graph Theory)
Time : Three Hours]
[Maximum Marks : 100
Note : Attempt any two parts from each question. All questions carry equal marks.

1. (a) Prove that any homomorphism is the product of a connected and a discrete homomorphism.
(b) For two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, where $V_{1} \cap V_{2}=\phi$ and $E_{1} \cap \mathrm{E}_{2}=\phi$, define the following :
(i) $\mathrm{G}_{1}+\mathrm{G}_{2}$
(ii) $\quad \mathrm{G}_{1} \oplus \mathrm{G}_{2}$
(iii) $\mathrm{G}_{1} \times \mathrm{G}_{2}$
(iv) $\mathrm{G}_{1} \wedge \mathrm{G}_{2}$
(v) $\mathrm{G}_{1} \mathrm{oG}_{2}$
where binary operations have their usual meaning.
(c) Write spectral properties of a graph.
2. (a) Prove that every planar graph is k-vertex colourable iff every plane graph is k-face colourable.
(b) Prove that a critical k-chromatic graph cannot be separated by a uniquely $(k-1)$-vertex colourable subgraph.
(c) For any graph G, prove that $\alpha_{0}+\beta_{0}=n$.
3. (a) Prove that a graph is triangulated iff every minimal vertex-separator induces a complete subgraph.
(b) Prove that a graph G is a permutation graph iff G and $\overline{\mathrm{G}}$ are comparability graphs.
(c) Prove that every graph on $\binom{k+l}{k}$ vertices contains either a complete subgraph on $k+1$ vertices or an independent set of $l+1$ vertices.
4. (a) Prove that the vertex group Γ_{0} and the induced edge group Γ_{1} of a graph G are isomorphic iff G has at most one isolated vertex and has no component isomorphic to K_{2}.
(b) Prove that if the eigen values of a graph are all distinct, then $\Gamma(\mathrm{G})$ is abelian and every element of Γ has order 2.
(c) Prove that the chromatic polynomial is multiplicative on the components.
