\qquad

D-3752

M. A./M. Sc. (Previous)
 EXAMINATION, 2020

MATHEMATICS

Paper Second
(Real Analysis)
Time : Three Hours]
[Maximum Marks : 100
Note: All questions are compulsory. Attempt any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Define Riemann-Stieltjes integral. If:

$$
f_{1} \in \mathrm{R}(\alpha)
$$

and

$$
f_{2} \in \mathrm{R}(\alpha)
$$

on $[a, b]$, then show that :

$$
f_{1}+f_{2} \in \mathrm{R}(\alpha)
$$

and

$$
\int_{a}^{b}\left(f_{1}+f_{2}\right) d \alpha=\int_{a}^{b} f_{1} d \alpha+\int_{a}^{b} f_{2} d \alpha
$$

(b) Define rectifible curve. If $\mathrm{Y}:[a, b] \rightarrow \mathrm{R}^{k}$ be a curve and $c \in(a, b)$, then show that :

$$
\wedge_{y}(a, b)=\wedge_{y}(a, c)+\wedge_{y}(c, b)
$$

(c) If $f \in \mathrm{R}(\alpha)$ on the interval $[a, b]$, then show that

$$
m[\alpha(b)-\alpha(a)] \leq \int_{a}^{b} f d \alpha \leq \mathrm{M}[\alpha(b)-\alpha(a)]
$$

where m and M are bounds of the function f.

Unit-II

2. (a) State and prove Weierstrass's M-test. Show that the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ where $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$ does not converge uniformly on R.
(b) State and prove Tauber's theorem on power series.
(c) State and prove the Weierstrass's approximation theorem.

Unit-III

3. (a) State and prove the implicit function theorem.
(b) Define Jacobian for two functions. If u_{1}, u_{2} are functions of y_{1}, y_{2} and y_{1}, y_{2} are functions of x_{1}, x_{2}, then :

$$
\frac{\partial\left(u_{1}, u_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}=\frac{\partial\left(u_{1}, u_{2}\right)}{\partial\left(y_{1}, y_{2}\right)} \cdot \frac{\partial\left(y_{1}, y_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}
$$

(c) Find the maximum and minimum values of the function:

$$
f(x, y)=2 x^{2}-3 y^{2}-2 x
$$

subject to constraint $x^{2}+y^{2} \leq 1$.

Unit-IV

4. (a) If A be any set and $E_{1}, E_{2}, \ldots . ., E_{n}$ a finite sequence of disjoint measurable sets, then show that :

$$
m^{*}\left(\mathrm{~A} \cap\left[\bigcup_{i=1}^{n} \mathrm{E}_{i}\right]\right)=\sum_{i=1}^{n} m^{*}\left(\mathrm{~A} \cap \mathrm{E}_{i}\right)
$$

(b) State and prove the Jordan Decomposition theorem for a function of bounded variation.
(c) If f be a bounded and measurable function defined on $[a, b]$ and if :

$$
\mathrm{F}(x)=\int_{a}^{x} f(t) d t+\mathrm{F}(a)
$$

then show that $\mathrm{F}^{\prime}(x)=f(x)$ almost everywhere in $[a, b]$.

Unit-V

5. (a) If (X, B, μ) be a measure space, $E_{i} \in B, \mu\left(E_{1}\right)<\infty$ and $\mathrm{E}_{i} \subset \mathrm{E}_{i+1}$, then show that:

$$
\mu\left(\bigcap_{i=1}^{\infty} \mathrm{E}_{i}\right)=\lim _{n \rightarrow \infty} \mu\left(\mathrm{E}_{n}\right)
$$

(b) State and prove Holder's inequality for L^{p}-spaces.
(c) Prove that L^{p}-space is a normed linear space.

