\qquad

D-3760

M. A./M. Sc. (Final) EXAMINATION, 2020

MATHEMATICS

(Optional)

Paper Fourth (i)
(Operations Research)

Time : Three Hours]

[Maximum Marks : 100
Note : All questions are compulsory. Attempt any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Use Simplex method to solve the following L. P. P. :

Maximize :

$$
z=3 x_{1}+2 x_{2}
$$

Subject to the constraints :

$$
\begin{gathered}
x_{1}+x_{2} \leq 4 \\
x_{1}-x_{2} \leq 2 \\
x_{1} \geq 0, x_{2} \geq 0
\end{gathered}
$$

(b) Use dual Simplex method to solve the following L. P. P. :

Minimize :

$$
z=3 x_{1}+x_{2}
$$

Subject to the constraints :

$$
\begin{gathered}
x_{1}+x_{2} \geq 1 \\
2 x_{1}+3 x_{2} \geq 2 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

(c) Use penalty method to:

Maximize :

$$
z=6 x_{1}+4 x_{2}
$$

Subject to the constraints :

$$
\begin{gathered}
2 x_{1}+3 x_{2} \leq 30 \\
3 x_{1}+2 x_{2} \leq 24 \\
x_{1}+x_{2} \geq 3 \\
x_{1} \geq 0
\end{gathered}
$$

and $x_{2} \geq 0$.

Unit-II

2. (a) Use Vogel's Approximation method to obtain an initial basic feasible solution of the Transportation problem :

	D	E	F	G	Available
A	11	13	17	14	250
B	16	18	14	10	300
C	21	24	13	10	400
Demand	200	225	275	250	

(b) Solve the following Assignment problem :
A
I
II
III
IV $\left(\begin{array}{cccc}1 & 4 & \text { C } & \text { D } \\ 9 & 7 & 6 & 3 \\ 4 \\ 8\end{array}\right)$
(c) Draw a network diagram for the following data :

Activity	Preceded by
A	-
B	A
C	A
D	A
E	C, D
F	D
G	E
H	G
I	F, H
J, I	

Unit-III
3. (a) Use Dynamic programming to solve :

Maximize :

$$
z=y_{1} \cdot y_{2} \cdot y_{3}, \ldots \ldots \ldots, y_{n}
$$

Subject to the constraints :

$$
y_{1}+y_{2}+\ldots \ldots . .+y_{n}=c
$$

and

$$
y_{i} \geq 0, i=1,2,3, \ldots \ldots, n
$$

(A-82) P. T. O.
(b) Two players A and B match coins. If the coins match, then A wins two units of value, if the coins do not match, then B wins two units of value. Determine the optimum strategies for the players and the value of the game.
(c) Find the optimum integer solution to the following L. P. P. :

Maximize :

$$
z=x_{1}+4 x_{2}
$$

Subject to the constraints :

$$
\begin{gathered}
2 x_{1}+4 x_{2} \leq 7 \\
5 x_{1}+3 x_{2} \leq 15 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

and are integers.

Unit-IV

4. (a) Write a short note on optimal product mix and activity levels.
(b) Explain Blending problems.
(c) Explain Petroleum refinery operations.

Unit-V

5. (a) Determine x_{1}, x_{2} and x_{3} so as to:

Maximize :

$$
z=-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+4 x_{1}+6 x_{2}
$$

Subject to the constraints:

$$
\begin{gathered}
x_{1}+x_{2} \leq 2 \\
2 x_{1}+3 x_{2} \leq 12 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

(b) Use Beale's method to solve the following NLPP : Minimize :

$$
z=6-6 x_{1}+2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}
$$

Subject to the constraints :

$$
x_{1}+x_{2} \leq 2 \text { and } x_{1}, x_{2} \geq 0
$$

(c) Use Wolfe's method to solve the following Q. P. P. : Maximize :

$$
z=2 x_{1}+3 x_{2}-2 x_{1}^{2}
$$

Subject to the constraints :

$$
\begin{gathered}
x_{1}+4 x_{2} \leq 4 \\
x_{1}+x_{2} \leq 2 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

