Roll No.

D-3764

M. A./M. Sc. (Final) EXAMINATION, 2020

MATHEMATICS

(Optional)

Paper Fifth (iii)

(Fuzzy Sets and Their Applications)

Time : Three Hours]

[Maximum Marks : 100
Note : Attempt any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) Define fuzzy set with examples. Let A, B be fuzzy sets defined on a universal set X. Prove that :

$$
|\mathrm{A}|+|\mathrm{B}|=|\mathrm{A} \cup \mathrm{~B}|+|\mathrm{A} \cap \mathrm{~B}|
$$

(b) Let f be a decreasing generator. Then a function g defined by $g(a)=f(0)-f(a)$ for any $a \in[0,1]$ is an increasing generator with $g(1)=f(0)$ and its pseudoinverse $g^{(-1)}$ is given by :

$$
g^{(-1)}(a)=f^{(-1)}(f(0)-a)
$$

for any $a \in \mathrm{R}$ and all find the value of $g_{w}^{(-1)}(a)$ if $g_{w}(a)=(1-a)^{w}(w>0)$.
(c) Let X be any universal set. A be a fuzzy set defined on X, then prove that for every $\mathrm{A} \in \mathbf{F}(\mathrm{X})$ (family of set X)

$$
\mathrm{A}=\bigcup_{\alpha \in[0,1]} \mathrm{A}
$$

where :

$$
{ }_{\alpha} \mathrm{A}(x)=\alpha \cdot{ }^{\alpha} \mathrm{A}(x) \forall x \in \mathrm{X}
$$

and union is standard fuzzy union. Also verify this if :

$$
\mathrm{A}=\frac{.2}{x_{1}}+\frac{.4}{x_{2}}+\frac{.6}{x_{3}}+\frac{.8}{x_{4}}+\frac{1}{x_{5}}
$$

Unit-II
2. (a) Let $* \in\{+,-, . /\}$ and let A, B denote continuous fuzzy numbers. Then prove that $\mathrm{A} * \mathrm{~B}$ is continuous fuzzy number, where :

$$
(\mathrm{A} * \mathrm{~B})(z)=\sup _{z=x^{*} y} \min [\mathrm{~A}(x), \mathrm{B}(y)]
$$

(b) Consider the set :

$$
\begin{aligned}
X_{1} & =\{0,1\} \\
X_{2} & =\{0,1\} \\
X_{3} & =\{0,1,2\}
\end{aligned}
$$

and the ternary fuzzy relation on $\mathrm{X}_{1} \times \mathrm{X}_{2} \times \mathrm{X}_{3}$ defined in table ahead. Let $\mathrm{R}_{i j}=\left[\mathrm{R} \downarrow\left\{\mathrm{X}_{i}, \mathrm{X}_{j}\right\}\right]$ and $\mathrm{R}_{i}=\left[\mathrm{R} \downarrow\left\{x_{i}\right\}\right]$ for all $i, j \in\{1,2,3\}$. Compute the
projection $\mathrm{R}_{12}, \mathrm{R}_{23}$ and R_{13}. Also find cylindric closures of $\left(\mathrm{R}_{12}, \mathrm{R}_{13}, \mathrm{R}_{23}\right)$:

$\left(x_{1}, x_{2}, x_{3}\right)$	$\mathrm{R}\left(x_{1}, x_{2}, x_{3}\right)$
$0 \quad 0 \quad 0$	0.4
$0 \quad 0 \quad 1$	0.9
$0 \quad 0 \quad 2$	0.2
$0 \quad 10$	1.0
$\begin{array}{lll}0 & 1\end{array}$	0.0
0112	0.8
100	0.5
1001	0.3
102	0.1
110	0.0
111	0.5
112	1.0

(c) Explain fuzzy equivalence relations and fuzzy compatibility relation.
Unit-III
3. (a) Determine all solution of $p \circ \mathrm{Q}=r$, where :

$$
\begin{aligned}
p & =\left[p_{j} / j \in \mathrm{~J}\right] \\
\mathrm{Q} & =\left[q_{j k} / j \in \mathrm{~J}, k \in \mathrm{~K}\right] \\
r & =\left[r_{k} / k \in \mathrm{~K}\right]
\end{aligned}
$$

and given that:

$$
\begin{aligned}
& \mathrm{Q}=\left[\begin{array}{cccc}
.1 & .4 & .5 & .1 \\
.9 & .7 & .2 & 0 \\
.8 & 1 & .5 & 0 \\
.1 & .3 & .6 & 0
\end{array}\right] \\
& r=\left[\begin{array}{llll}
.8 & .7 & .5 & 0
\end{array}\right]
\end{aligned}
$$

and
(b) Explain evidence theory.
(c) A belief measure Bel on a finite power set $\mathrm{P}(\mathrm{X})$ is a probability measure if and only if the associated basic probability assignment function m is given by :

$$
m(\{x\})=\operatorname{Bel}(\{x\})
$$

and $\quad m(\mathrm{~A})=0$
for all subsets of X are not singletons.

Unit-IV

4. (a) Write the difference between fuzzy logic and classical logic.
(b) Explain fuzzy quantifiers.
(c) Consider the if... then rules :
(i) If x is A_{1}, then y is B_{1}
(ii) If x is A_{2}, then y is B_{2}
where $\mathrm{A}_{j} \in \mathbf{J}(x), \quad \mathrm{B}_{i} \in \mathbf{J}(y)(j=1,2)$ are fuzzy sets :

$$
\begin{aligned}
& \mathrm{A}_{1}=\frac{1}{x_{1}}+\frac{.9}{x_{2}}+\frac{.1}{x_{3}} \\
& \mathrm{~A}_{2}=\frac{.9}{x_{1}}+\frac{1}{x_{2}}+\frac{.2}{x_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{B}_{1}=\frac{1}{y_{1}}+\frac{.2}{y_{2}} \\
& \mathrm{~B}_{2}=\frac{.2}{y_{1}}+\frac{.9}{y_{2}}
\end{aligned}
$$

given the fact " x is A^{\prime} " where $\mathrm{A}^{\prime}=\frac{.8}{x_{1}}+\frac{.9}{x_{2}}+\frac{.1}{x_{3}}$. Use the method of interpolation to calculate the conclusion B^{\prime}.

Unit-V

5. (a) Formulate reasonable fuzzy inference rules for air conditioning fuzzy control system.
(b) Assume that each individual of a group of eight decision makers has a total preference ordering $\mathrm{P}_{i}\left(i \in \mathrm{~N}_{8}\right)$ on a set of alternatives $\mathrm{X}=\{w, x, y, z\}$ as follows :

$$
\begin{aligned}
\mathrm{P}_{1} & =(w, x, y, z) \\
\mathrm{P}_{2} & =\mathrm{P}_{5}=(z, y, x, w) \\
\mathrm{P}_{3} & =\mathrm{P}_{7}=(x, w, y, z) \\
\mathrm{P}_{4} & =\mathrm{P}_{8}=(w, z, x, y) \\
\mathrm{P}_{6} & =(z, w, x, y)
\end{aligned}
$$

Use fuzzy multiperson decision-making to determine the group decision.
(c) Explain Fuzzy Ranking methods.

