| Roll | No. | ••••• |
|------|-----|-------|
|------|-----|-------|

# E - 355

# M. Sc. (IT) (First Semester) EXAMINATION, Dec.-Jan., 2020-21

Paper Third

# MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

[MSC (IT)—103]

Time: Three Hours [ Maximum Marks: 100

[ Minimum Pass Marks : 40

**Note:** Attempt all Sections as directed.

Section—A

1 each

#### (Objective/Multiple Choice Questions)

**Note:** Attempt all questions.

Choose the correct answer:

- 1. Determine which of the following sets are finite:
  - (a) The set of lines parallel to the x-axis
  - (b) The set of numbers which are multiples of 5
  - (c) The set of letters in the English alphabet
  - (d) The set of circles through the origin (0, 0)

- 2. Suppose A is finite set with *n* elements. The number of elements in the largest equivalence relation of A is :
  - (a) 1
  - (b) *n*
  - (c) n + 1
  - (d)  $n^2$
- 3. The number of functions from a 6-element set to a 4-element set is :
  - (a) 6+4
  - (b)  $6^4$
  - (c)  $4^6$
  - (d)  $6 \times 4$
- 4. What is Existential quantifier?
  - (a) Symbol ( $\forall$ ) for all
  - (b) Symbol ( $\exists$ ) for some
  - (c) Symbol  $\forall$  and  $(\exists)$
  - (d) Symbol (~) Negation
- 5. A self complemented, distributive lattice is called:
  - (a) Boolean Algebra
  - (b) Modular Lattice
  - (c) Complete Lattice
  - (d) Self Dual Lattice
- 6. The Idempotent law is defined as:
  - (a) a \* o = o
  - (b) a \* a + b = a
  - (c) a + a \* b = a
  - (d) a \* a = a

- 7. The Boolean expression A + BC equals :
  - (a)  $\overline{A} + B \overline{A} + C$
  - (b) (A + B) (A + C)
  - (c)  $(A + B)(\bar{A} + C)$
  - (d) None of the above
- 8. For any a, b in a Boolean algebra (B,  $\vee$ ,  $\wedge$ ,'), if  $a \vee b' = a' \wedge b'$  and  $a \wedge b' = a' \vee b'$ , then this law is called:
  - (a) Associative law
  - (b) Absorption law
  - (c) Involution law
  - (d) De-Morgan's law
- 9. In the group  $(I, +_5)$ , where  $I = \{ 0, 1, 2, 3, 4 \}$  the inverse of 1 is:
  - (a) 4
  - (b) 3
  - (c) 2
  - (d) 0
- 10. Which of the following is TRUE?
  - (a) The set of all rational negative numbers forms a group under multiplication
  - (b) The set of all matrices forms a group under multiplication
  - (c) The set of all non-sigular matrices forms a group under multiplication.
  - (d) Both (b) and (c) are true

| 11. | Let                                         | G be a cyclic group of order 4. Then number of                              |  |  |  |
|-----|---------------------------------------------|-----------------------------------------------------------------------------|--|--|--|
|     | generators of G is:                         |                                                                             |  |  |  |
|     | (a)                                         | 1                                                                           |  |  |  |
|     | (b)                                         | 2                                                                           |  |  |  |
|     | (c)                                         | 3                                                                           |  |  |  |
|     | (d)                                         | 4                                                                           |  |  |  |
| 12. | Which of the following statements is true ? |                                                                             |  |  |  |
|     | (a)                                         | Every group is field                                                        |  |  |  |
|     | (b)                                         | Every ring is a field                                                       |  |  |  |
|     | (c)                                         | Every integral domain is a field                                            |  |  |  |
|     | (d)                                         | Every finite integral domain is a field                                     |  |  |  |
| 13. | The                                         | The generators of the multiplicative cyclic group $\{1, \omega, \omega^2\}$ |  |  |  |
|     | are:                                        |                                                                             |  |  |  |
|     | (a)                                         | $\omega$ and $\omega^2$                                                     |  |  |  |
|     | (b)                                         | 1 and $\omega^2$                                                            |  |  |  |
|     | (c)                                         | 1 and $\omega$                                                              |  |  |  |
|     | (d)                                         | $1, \omega \text{ and } \omega^2$                                           |  |  |  |
| 14. | In a d                                      | directed graph:                                                             |  |  |  |
|     | (a)                                         | Underlying graph is fixed                                                   |  |  |  |
|     | (b)                                         | Directions are fixed                                                        |  |  |  |
|     | (c)                                         | Both (a) and (b)                                                            |  |  |  |
|     | (d)                                         | None of these                                                               |  |  |  |

15. The minimum number of edges in a connected graph with n vertices:

- (a) n-1
- (b) n + 1
- (c) n
- (d) None of these

16. Maximum number of edges in an *n*-node undirected graph without self loops is :

- (a)  $n^2$
- (b)  $\frac{n + 1}{2}$
- (c) n 1
- (d)  $\frac{n 1}{2}$

17. Preorder traversal is nothing but:

- (a) Linear order
- (b) Breadth first order
- (c) Depth of first order
- (d) Topological order

18. If height of a tree is 10, the highest level of the tree is :

- (a) 10
- (b) 9
- (c) 5
- (d) 1

[6] E-355

- 19. A binary tree T has *n* leaf nodes. The number of nodes of degree 2 in T is :
  - (a) n-1
  - (b)  $2^{n}$
  - (c) n
  - (d)  $\log_2 n$
- 20. In a preorder traversal, the ...... processed first.
  - (a) left subtree
  - (b) right subtree
  - (c) root
  - (d) Both (a) and (b)

#### Section—B

2 each

## (Very Short Answer Type Questions)

**Note:** Attempt all questions in 2-3 sentences.

- 1. Define Cartesian product with example.
- 2. What are Quantifiers?
- 3. Define sublattice.
- 4. Write uses of switching circuits.
- 5. Define Boolean Algebra.
- 6. Define subgraph.
- 7. Define planar graph.
- 8. Define binary tree.
- 9. Define co-set.
- 10. Define centre of a tree.

#### Section—C

3 each

### (Short Answer Type Questions)

**Note:** Attempt all questions in less than 75 words.

1. Let the functions f and g be defined by f x = 2x + 1 and g  $x = x^2 - 2$ . Find the formula defining the composition function g o f.

[7] E-355

2. Prove that:

$$\left[\begin{array}{cc} p \Rightarrow q & \wedge & p \end{array}\right] \Rightarrow q$$

is a tautology.

- 3. Define phase-structure grammar.
- 4. Define lattices and isomorphic lattices.
- 5. Explain logic gates.
- 6. Explain the path and connectivity in a directed graph.
- 7. Explain complete and extended binary trees.
- 8. Define Ring with example.
- 9. Explain traversing binary tree.
- 10. Define bipartite graphs.

#### Section—D

6 each

#### (Long Answer Type Questions)

**Note:** Attempt all questions in 150 words.

1. Consider the Z of integers and an integer m > 1. We say that x is congruent to y modulo m, written  $x \equiv y \pmod{m}$  if x = y is divisible by m. Show that this defines an equivalence relation on Z.

Or

Is the following argument valid?

If two sides of a triangle are equal then the opposite are equal,

Two side of a triangle are not equal,

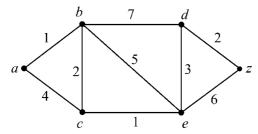
- : The opposite angles are not equal.
- 2. Let a, b be elements of a Boolean algebra, then  $a \lor b' = a' \land b' \text{ and } a \land b' = a' \lor b'.$

[8] E-355

Or

Let L be a bounded distributive lattice. It a complement of any element exists, it is unique.

3. Show that every finite integral domain is a field.


Or

Let (H, \*) and (K, \*) are subgroups of group (G, \*). Then show that  $(H \cap K, *)$  is also a subgroup.

4. Prove that if G is a connected graph and every vertex of G has even degree, then G has a Euler circuit.

Or

Compute the shortest distance between source a and destination z using Dijkstra's algorithm for the following graphs:



5. Write the applications of trees in Computer Science.

Or

Prove that every connected graph has at least *one* spanning tree.