E-3881

B. C. A. (Part-I) EXAMINATION: 2021

(OLD COURSE)

Paper First

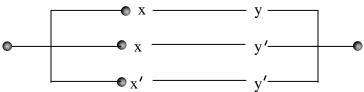
DISCRETE MATHEMATICS (101)

Time: Three Hours

[Maximum Marks : 50

Note: - All question are compulsory. Attempt any two parts from each questions. All question carry equal marks.

UNIT-1


Establish the logically equivalence using truth table of the following proposition:

 $PV(q \wedge r) \equiv (P \vee q) \wedge (P \vee r)$

- State De Morgan's law and use it to find negation of each of the following statement.
 - a. Mohan is rich and happy.
 - b. Shyam will run or bicycle tomorrow.
 - c. Rita walks or takes the bus to class.
 - d. Rahul is smart and hardworking
- Let P(x) be the statement " $x=x^2$ ". If the domain consists of integers, Explain the following statements and determine their truth valus.
 - a. P(1)
- b. P(2) c. P(-1)
- d. $\exists x P(x)$ e. $\forall x p(x)$

UNIT -2

- 2. a. If $(B, +, \bullet, ')$ is a Boolean algebra, then show that following statements are equivalent
 - a. a.b' = 0
- b. a+b = b
- In a Boolean algebra $(B, +, \bullet, ')$ show that if a+b = a+c and ab=ac, then b=c.
- Draw a simpler circuit for the following diagram and verify the equivalent circuit.

UNIT -3

- 3. a. Write the function into conjuctive normal forms in three variables x,y and z : f(x,y,z) = x
 - b. Change the following Boolean function disjunctive normal form $f(x, y, z) = [x + (x' + y)'] \bullet [x + (y' \bullet z')']$
 - c. Change the following function to conjuctive normal forms: f(x, y, z) = (x+y)(x+y')x'+z

UNIT-4

- 4. a. Show that if R_1 and R_2 be two equivalence relations on X, then $R1 \land R2$ is also an equivalence relation on X.
 - b. Let f be a function from X to Y. Define a relation R on X by xRy if f(x)=f(y). Show that R is an equivalence relation on X.
 - c. Let $D_{20} = \{1, 2, 4, 5, 10, 20\}$, Define a relation '1' on D_{20} by x/y if x divides y. Show that '1' is a partial order relation on D_{20} .

UNIT-5

- 5. a. Show that in a graph, sum of he degree of all vertices is equal to twice the number of edges.
 - Show that maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{2}$
 - Define the following in a graph:
 - a. degree of vertex
 - b. walk
 - c. path
 - d. circuit
 - e. planar graph