\qquad

F-765

M. A./M.Sc. (THIRD SEMESTER)
 EXAMINATION, Dec. - Jan., 2021-22
 (MATHEMATICS)
 PAPER THIRD (C)
 (FUZZY SET AND THEIR APPLICATION)

[Time : Three Hours]
[Maximum Marks : 80]

Note : Attempt all sections as directed.

Section - A

(Objective/Multiple Choice Questions)
(1 mark each)

Note: Attempt all questions.

1. If A and B are two fuzzy sets in X, then for all $x \in X$, their standard fuzzy intersection is defined as $(A \cap B)(x)=\ldots .$.
2. If A and B are any two fuzzy sets in X, then $A \cup(A \cap B)=A$ is known as the law of \qquad
3. Every fuzzy complement has at most \qquad equilibrium.
4. The property of t-conorm $u(a, a)>a$ for all $a \in[0,1]$ is known as \qquad
5. If $f: X \rightarrow Y$ is a crisp function, $A \in f(x)$ and $\alpha \in[0,1]$, then ${ }^{\alpha}[f(A)]=f\left({ }^{\alpha} A\right) \cdot($ True/False)
6. A normal fuzzy set A on R such that $\propto A$ is a closed interval for each $\alpha \in(0,1]$ and ${ }^{0+} A$ bounded is called a \qquad
7. If ${ }^{\alpha} A=[2 \alpha-1,3-2 \alpha]$ and ${ }^{\alpha} B=[2 \alpha+1,5-2 \alpha]$, then
${ }^{\alpha}(A-B)=\ldots \ldots \ldots$.
8. If A and B are fuzzy numbers, then for each $Z \in R, \mathrm{~A}+\mathrm{B}$ is a fuzzy set on R defined by $(A+B)(z)=$ \qquad
9. If $\mathrm{R}(x, y)$ is a fuzzy relation, then for each $x \in X$, $\operatorname{dom} \mathrm{R}(x)=$
10. The standard composition of two binary fuzzy relations $P(x, y)$ and $Q(y, z)$ produces a binary fuzzy relation $R(x, z)$ defined by \qquad
11. If $\mathrm{R}(\mathrm{x}, \mathrm{x})$ is a fuzzy relation such that $R(x, x) \neq 1$ for some $x \in X$, then R is called \qquad relation.
12. A fuzzy relation $R(x, x)$ is called antitransitive if \qquad
13. A binary relation $R(x, x)$ that is reflexive and symmetric is called a tollerance relation. (True/False)
14. If $\mathrm{R}=\begin{array}{r}a \\ a \\ c\end{array}\left[\begin{array}{ccc}1 & \mathrm{~b} & \mathrm{c} \\ .8 & 0 \\ 0 & 0 & 1\end{array}\right]$ is a binary fuzzy relation on $X=\{a, b, c\}$, then ${ }^{\wedge} R=$ \qquad
15. $X=B-A$ is the solution of the fuzzy equation $A+X=B$. (True/False)
16. If $R(x, x)$ and $Q(y, y)$ are fuzzy binary relations, then a function $h: x \rightarrow y$ is said to be a fuzzy homomorphism if. \qquad
17. For a given belief measure Bel, the corresponding basic probability assignment m is determined for all $A \in P(x)$ by the formula $m(A)=$ \qquad
18. For all $A \in P(x), P l(A)=1-\operatorname{Bel}(\bar{A})$. (True/False)
19. Total ignorance is expressed in terms of the basic assignment by $\mathrm{m}(\mathrm{X})=1$ and $\mathrm{m}(\mathrm{A})=0$ for all $A \neq X$. (True/ False).
20. For every $A, B \in P(x), \operatorname{Nec}(A \cup B)=\min [\operatorname{Nec}(\mathrm{A})$, Nec(B)]. (True/False)

Section - B

(Very Short Answer Type Questions)

(2 marks each)

Note- Attempt all questions.

1. If $A=\cdot 4 / a+3 / b+.2 / c+0 / d+1 / e$, then find ${ }^{0.2+} \mathrm{A}$
2. Define cartesian product of two fuzzy sets.
3. Define fuzzy number.
4. Define difference of two fuzzy numbers.
5. Define asymmetric fuzzy relation.
6. Define upper bound for a fuzzy set.
7. Define fuzzy relation equations.
8. Define fuzzy measure.

Section-C
(Short Answer Type Questions)
(3 marks each)

Note- Attempt all questions.

1. Prove that the standard fuzzy union is the only idempotent t-conorm.
2. Prove that every fuzzy complement has at most one equilibrium.
3. If $\mathrm{f}: \mathrm{x} \rightarrow \mathrm{y}$ is a crisp function and $B_{1}, B_{2} \in f(y)$, then prove that $\mathrm{B}_{1} \subseteq B_{2} \Rightarrow f^{-1}\left(B_{1}\right) \subseteq f^{-1}\left(B_{2}\right)$.
4. Using fuzzy numbers, define the concept of a fuzzy cardinality for fuzzy sets that are defined on finite universal sets.
5. Define preordering or quasi-ordering type of binary fuzzy relation $\mathrm{R}(\mathrm{x}, \mathrm{x})$.
6. Draw the graph of the following fuzzy relation on $X=\{a, b, c, d, e\}$:

$$
R=\begin{gathered}
a \\
b \\
c \\
d \\
e
\end{gathered}\left[\begin{array}{ccccc}
1 & .7 & 0 & 1 & .7 \\
0 & 1 & 0 & .9 & 0 \\
.5 & .7 & 1 & 1 & .8 \\
0 & 0 & 0 & 1 & .2 \\
0 & .1 & 0 & .9 & 1
\end{array}\right]
$$

For $\propto=.7$ and $\propto=.9$.
7. If $P{ }_{o}^{i} Q=R$ and $S(Q, R) \neq \phi$, then prove that $\hat{P}=\left(Q_{0}^{\omega i} R^{-1}\right)^{-1}$ is the greatest member of $S(Q, R)$.
8. Let a fuzzy set F be defined on N by $F=\frac{.4}{1}+\frac{.7}{2}+\frac{1}{3}+\frac{.8}{4}+\frac{.5}{5}$ and $A(x)=0 \forall x \notin\{1,2,3,4,5\},$. Determine $\operatorname{Nec}(\mathrm{A})$ and Pos (A) induced by F for all $A \in P(\{1,2,3,4,5\})$.

Section - D

(Long Answer Type Questions)

(5 Marks each)

Note: Attempt all questions.

1. Let i_{w} denote the class of yager t-norms, then prove that $i_{\text {min }}(a, b) \leq i_{w}(a, b) \leq \min (a, b)$ for all $a, b \in[0,1]$.

Or
State and prove first decomposition theorem on fuzzy sets.
2. Solve the fuzzy equation $A+X=B$, where

$$
\begin{aligned}
& A=\frac{.2}{[0,1]}+\frac{.6}{[1,2]}+\frac{.8}{[2,3]}+\frac{.9}{[3,4]}+\frac{1}{4}+\frac{.5}{[4,5]}+\frac{.1}{[5,6]} \text { and } \\
& B=\frac{.1}{[0,1]}+\frac{.2}{[1,2]}+\frac{.6}{[2,3]}+\frac{.7}{[3,4]}+\frac{.8}{[4,5]}+\frac{.9}{[5,6]}+\frac{1}{6} \\
& +\frac{.5}{[6,7]}+\frac{.4}{[7,8]}+\frac{.2}{[8,9]}+\frac{.1}{[9,10]} \text { are two fuzzy }
\end{aligned}
$$ numbers.

Or
Let R be a reflexive fuzzy relation on X^{2}, where $|X|=n \geq z$.
Then prove that $R_{T(i)}=R^{n-1}$.
3. Explain projections and cylindrical extensions with suitable example.

Or

Show that for every fuzzy partial ordering on X, the sets of undominated and undominating elements of X are nonempty.
4. Solve the fuzzy relation equation.

$$
p o\left[\begin{array}{ccc}
.9 & .6 & 1 \\
.8 & .8 & .5 \\
.6 & .4 & .6
\end{array}\right]=\left[\begin{array}{lll}
.6 & .6 & .5
\end{array}\right]
$$

For the max-min composition.
Or
Let $X=\{a, b, c, d\}$. Given the basic assignment $m(\{a, b, c\})=.5, m(\{a, b, d\})=.2$, and $m(X)=.3$, determine the corresponding belief and plausibility measures.

