Roll No. \qquad

F-312

M.A./M.Sc. (First Semester)

EXAMINATION, Dec. - Jan., 2021-22

MATHEMATICS

Paper Fourth

(Advanced Complex Analysis - I)

Time : Three Hours]
[Maximum Marks:80 [Minimum Pass marks:16

Note : Attempt all sections as directed.

Section - A

(Objective/Multiple Choice Questions)
(1 mark each)
Note: Attempt all questions.
Choose the correct answer:

1. The path of the difinite integral $\int_{a}^{b} f(z) d z$ is :
(A) The line segment joining the points $z=a$ and $z=b$.
(B) Any curve joining the points $z=a$ and $z=b$
(C) Any circle such that the points $z=a$ and $z=b$ lie on it.
(D) None of these.
2. If $f(z)$ is analytic in a simply connected domain D and C is any closed continuous rectifible curve in D, then
$\int_{c} f(z) d z$ is equal to -
(A) 0
(B) 1
(C) C
(D) D
3. For the function $f(z)=\tan \frac{1}{z}, z=0$ is:
(A) Isolated essential singularities
(B) Removable singularity
(C) Non - isolated essential singularity
(D) None of these
4. Poles of an analytic function are:
(A) Isolated
(B) Non-isolated
(C) Removable
(D) None of these
5. If $f(z)$ is analytic in a domain $|z|<1$ and satisfies the conditions $f(z) \leq 1, f(0)=0$ then:
(A) $|f(z)| \geq z,\left|f^{\prime}(0)\right| \leq 1$
(B) $|f(z)| \geq z,\left|f^{\prime}(0)\right| \geq 1$
(C) $|f(z)| \leq z,\left|f^{\prime}(0)\right| \leq 1$
(D) All of the above
6. One of the roots of the equation $Z^{4}+Z^{3}+1=0$ lies in the:
(A) First Quadrant
(B) Second Quadrant
(C) First \& Second Quadrant
(D) None of these
7. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^{2 n-1}}{(2 n-1)!}$ when $|z|<\infty$ represents.
(A) $\operatorname{Sin} z$
(B) $\operatorname{Cos} z$
(C) $\log (1-z)$
(D) None of these
8. At $z=1$, the function $f(z)=\frac{z}{z^{2}-1}$ has a pole of order:
(A) One
(B) Two
(C) No pole exists
(D) None of these
9. If $\mathrm{f}(\mathrm{z})$ has an isolated singularity at $z=\infty$ then the residue at $z=\infty$ is
(A) $\frac{1}{2 \pi i} \int_{c} f(z) d z$
(B) $\frac{-1}{2 \pi i} \int_{c} f(z) d z$
(C) $\frac{ \pm 1}{2 \pi i} \int_{c} f(z) d z$
(D) None of these

Here C is any closed contour which encloses all the finite singularities of $f(z)$ \& integral is taken in positive direction.
10. The residue of $f(z)=\frac{e^{z}}{z^{2}\left(z^{2}+a\right)}$ at $z=0$ is-
(A) 0
(B) $i e^{3 i}$
(C) $\frac{1}{9}$
(D) $\frac{3}{13}$
11. The number of poles of $f(z)=\frac{1}{z\left(z^{2}+3\right)\left(z^{2}+2\right)^{3}}$ inside the circle $|z|=1$ are -
(A) 9
(B) 5
(C) 2
(D) 1
12. The residue of $\frac{1}{\left(Z^{2}+1\right)^{3}}$ at $z=i$ is given by -
(A) $\frac{3}{8 i}$
(B) $\frac{3 i}{8}$
(C) $\frac{3}{16 i}$
(D) $\frac{3 i}{16}$
13. A Transformation of the type $\omega=\alpha z+\beta$, where α and β are complex constant, is known as a:
(A) Translation
(B) Magnification
(C) Linear transformation
(D) Bilinear transformation
14. Under the transformation $\omega=\frac{1}{z}$, the image of the line $y=1 / 4$ in z - plane is:
(A) Circle $u^{2}+v^{2}=4$
(B) Straight line
(C) Circle $u^{2}+v^{2}+4 v=0$
(D) None of them
15. If $\omega=f(z)$ represents a conformal mapping of a domain D, then $f(z)$ is:
(A) Analytic in D
(B) Not necessarily analytic in D
(C) Not analytic in D
(D) None of these
16. The fixed points of the bilinear transformation $\omega=\frac{z}{z-2}$ are:
(A) 0,0
(B) 0,3
(C) 0,2
(D) None of these
17. Let $\{f n\}$ be a sequence in $\mathrm{H}(\mathrm{G})$ and $f \in c(G, C)$ such that $f n \rightarrow f$. Then f is analytic and $f_{n}^{(k)} n \rightarrow f^{(k)}$ for each inte-ger-
(A) $k \leq 1$
(B) $\quad k=0$
(C) $k \geq 1$
(D) None of these
18. If f is analytic in a domain D and is not constant then $\omega=f(z)$ maps open sets of D onto -
(A) Open sets in ω-plane
(B) Closed set in ω-plane
(C) (A) and (B) both
(D) None of these
19. The space $H(G)$ of analytic functions of G is a :
(A) Metric space
(B) Complete metric space
(C) Not necessarily complete
(D) None of these
20. Let $F \subset C(G, \Omega)$ (the set of all continuous functions from G to Ω). If each sequence in F has a subsequence which converges to a function f in $C(G, \Omega)$. Then F is called -
(A) Totally bounded
(B) Compact
(C) Normal
(D) Locally bounded

Section - B

(Very Short Answer Type Questions)

(2 marks each)
Note : Attempt all questions.

1. Evaluate $\oint_{c} \frac{e^{z}}{(z-1)(Z-4)} d z$ where C is the circle $|z|=2$ by using Cauchy's integral formula.
2. Write the statement of Morera's Theorem.
3. Write the statement of Minimum Modulus Principle.
4. Find the residue of $\frac{1}{\left(z^{2}+1\right)^{3}}$ at $z=i$
5. Define meromorphic function.
6. Consider the transformation $\omega=T(z)=\frac{z+1}{z+3}$ find $T^{-1}(\omega)$.
7. Write the sufficient condition for $\omega=f(z)$ to represent a conformal mapping.
8. State the Riemann mapping theorem.

Section-C

(Short Answer Type Questions)

(3 marks each)
Note: Attempt all questions.

1. Prove that $\cos h\left(z+\frac{1}{z}\right)=a_{0}+\sum_{n=1}^{\infty} a_{n}\left(z^{n}+\frac{1}{z^{n}}\right)$
where $a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos h(2 \cos \theta) \cos n \theta d \theta$
2. Prove that the value of the integral of $\frac{1}{Z}$ along a semi circular arc $|z|=a$ from -a to a is $-\pi i$ or πi according as the arc lies above or below the real axis.
3. State the argument principle.
4. By the method of contour integration, show that $\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2}$
5. Consider the transformation $\omega=3 z$ and determine the region D ' of the co-plane into which the triangular region D enclosed by the lines $x=0, y=0, x+y=1$ in the z - plane is mapped under this transformation.
6. Find the bilinear transformation which maps 0,1 and ∞ into $1, i$ and -1 respectively.
7. Show that if a set $\mathrm{F} \subset \mathrm{C}(\mathrm{G}, \Omega)$ is normal then \bar{F} is normal.
8. Show that $(\mathrm{C}(\mathrm{G}, \Omega), \varrho)$ is a metric space.

F-312

Section-D

(Long Answer Type Questions)(5 mark each)

Note: Attempt all questions.

1. State and prove Cauchy's integral formula for higher order derivative.

OR
If $f(z)$ is analytic within and on a closed contour C except at a finite number of poles and has no zero on

C, then prove that, $\quad \frac{1}{2 \pi i} \int_{c} \frac{f^{\prime}(z)}{f(z)} d z=N-P$,
Where N is the number of zeros and P the number of poles inside C and a pole or zero of order m being counted m times.
2. By contour integration, show that:
$\int_{0}^{\infty} \frac{\sin x}{x\left(x^{2}+a^{2}\right)} d x=\frac{\pi}{2 a^{2}}\left(1-e^{-a}\right),(a>0)$
OR
State and prove Cauchy's Residue theorem.
3. Show that in the transformation $(\omega+1)^{2}=\frac{4}{z}$, the unit circle in the ω - plane corrsponds to a parabola in z - plane and inside of the circle to the outside of the parabola.

OR

Find the bilinear transformations which maps the half plane $I(z) \geq 0$ onto the unit circular disc $|\omega| \leq 1$.
4. State and prove Montel's theorem.

OR

State and prove open mapping theorem.

