Roll No. Total Printed Pages - 4

F-3954

B.C.A., (Part - II) Examination, 2022 (OLD COURSE) PAPER FIRST NUMERICAL ANALYSIS (201)

Time : Three Hours] [Maximum Marks:50

Note: All questions are compulsory. Attempt any two parts from each question. All questions carry equal marks. Simple/Scientific calculator is allowed.

Unit - I

- 1. (a) Evaluate $\sqrt{12}$ to four places of decimals by using Newton-Raphson method.
 - (b) Find a real root of the equation $f(x) = x^3 2x 5 = 0$, Using bisection method in five stage.

[2]

(c) Using Regula-falsi method, find the real roots of the equation $x^4 - x - 10 = 0$

Unit - II

2. (a) Use power method to find the largest Eigen value of the matrix:

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$

(b) Apply triangularisation method to obtain the inverse of the matrix.

$$A = \begin{bmatrix} 50 & 107 & 36 \\ 25 & 54 & 20 \\ 31 & 66 & 21 \end{bmatrix}$$

(c) Find the inverse of the matrix.

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$

By Gauss - Jordan method.

Unit - III

- 3. (a) Given $\sin 45^{\circ}=0.7071$, $\sin 50^{\circ}=0.7660$, $\sin 55^{\circ}=0.8192$, $\sin 60^{\circ}=0.8660$, Find $\sin 52^{\circ}$, by using any method of interpolation
 - (b) Using Lagrange's interpolation formula, find the value of y, for x = 9.5 from the following table :

x	7	8	9	10
y=f(x)	3	1	1	9

(c) Find the cubic polynomial which takes the following values.

x	0	1	2	3
у	1	0	1	10

Unit - IV

4. (a) Given: $\frac{x}{y=f(x)}$: $\frac{0.1}{1.10517} \frac{0.2}{1.22140} \frac{0.3}{1.34986} \frac{0.4}{1.49182}$

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at $x = 0.4$

(b) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using Simpson's One-Third rule.

(c) Explain in general Simpson's rule gives a better result than the Trapezoidal rule.

Unit - V

- **5.** (a) Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with the initial condition y = 1 at x = 0. Find y for x = 0.1 by Euler's method (Five step).
 - (b) Use Runge Kutta Method to solve $\frac{dy}{dx} = x.y$ for x = 1.4 initially x = 1, y = 2 (take h = 0.2).
 - (c) Solve $\frac{dy}{dx} = x + y^2$; y(0) = 1 using Taylor's series method and compute y (0.1).