[2]

Roll No. Total Printed Pages - 5

F - 3861

M.A./M. Sc. (Final) Examination, 2022 Mathematics (Optional) Paper Fourth (ii) (Wavelets)

Time: Three Hours] [Maximum Marks:100

Note: Attempt any two parts from each question. All questions carry equal marks.

Unit - I

1. (A) If ψ be a function defined by $\hat{\psi}(\xi) = x_1(\xi) \text{ where: } I = \begin{bmatrix} -2\pi, -\pi \end{bmatrix} U \begin{bmatrix} \pi, 2\pi \end{bmatrix}$ then prove that ψ is an orthonormal wavelet for $L^2(\cdot; \cdot)$.

(B) Define Shannon wavelet. Show that the modulus of the Fourier Transform of a scaling function can be expressed in terms of the modulus of the Fourier transform of the wavelet.

(C) Let f be a function in $L^2(;)$ and $\alpha > 0$; suppose.

$$\int\limits_{2^i\pi\le |\xi|\le 2^{j+1}\pi}|\hat{f}(\xi)|\,d\,\xi\le C^{2-\infty\,j}$$
 j=0,1,2,..... then show that, if $\infty\not\in N, f\in \wedge_{\sigma}(\mathbb{T})$

and if
$$\infty \in N, f \in_{\land - \in} (;)$$
 for all $0 < \in < \infty$

Unit - II

- 2. (A) If ψ is an orthonormal wavelet and $\begin{vmatrix} a \\ \psi \end{vmatrix}$ is continuous at zero then prove that $\hat{\psi}(0) = 0$
 - (B) Show that a function $f \in L^2(\)$ belongs to $V_{\mathbf{O}}$ if and only if $\xi^2 \hat{f}(\xi)$ is a 2π periodic function on $\ _{\mathbf{i}}$.
 - (C) Show that $f \in C_i$ if and only if

$$f \in B_{j+1}, F[f](0) = 0 \text{ and } \sum_{l \in \mathbb{Z}} \frac{F[f](n+2^{j}l)}{(n+2^{j}l)^{2}} = 0$$
 for $n = 1, 2, \dots, N(=2^{j}-1)$

Unit - III

- 3. (A) Let H be a Hilbert space and $\left\{e_j:j=1,2,\ldots..\right\}$ be a family of elements of H. Then show that $\|f\|^2=\sum_{j=1}^\infty \left|< f,e_j>\right|^2 \text{ holds for all } f\in H \text{ if and }$ only if $f=\sum_{j=1}^\infty < f,e_j>e_j$, with convergence in H, for all $f\in H$
 - (B) If ψ is an orthonormal wavelet and

$$G_n(\xi) = \sum_{k \in \mathbb{Z}} \hat{\psi}(2^n (\xi + 2k\pi) \overline{\hat{\psi}(2^j (\xi + 2k\pi)} \hat{\psi}(2^j \xi))$$
a.e. for all n >=1 then show that
$$G_n(\xi) = G_{n-1}(2\xi)$$

(C) Show that there is no orthonormed wavelet for $H^2(\mathbf{;}\;)$ satisfying. The regularity condition (R⁰) given by: $(i) \left| \hat{\psi} \left(\xi \right) \right|$

(ii)
$$|\hat{\psi}(\xi)| = 0(c1+|\xi|)^{-<-\frac{1}{2}}$$
 at ∞ , for same $\alpha > 0$

Unit - IV

4. (A) Define frame. Give an example to even when all zero elements are removal from a frame, then show that the new frame is not necessary a basis.

OR

(B) For any $h \in L^2(\)$, if $Qh \in L^2(\)$ and $Ph \in L^2(\)$, then show that

(i)
$$R(Qh)(S,t) = S(Rh)(S,t) + \frac{1}{2\pi i} \frac{\partial}{\partial t} (Rh)(S,t)$$

and

(ii)
$$R(Ph)(S,t) = -i\frac{\partial}{\partial s}(Rh)(S,t)$$

- (C) Suppose that $\{e_j: j=1,2,\ldots\}$ be a family in Hilbert space H satisfying:
- $A \left\| f \right\|^2 \le \sum_{j=i}^{\infty} \left\| < f, e_j > \right|^2 \le B \left\| f \right\|^2 \quad \text{for all f be-}$

longs to dense subject D of H. Then prove that $\left\{e_j: j=1,2,3,\ldots\right\}$ is a frame for H.

Unit - V

- 5. (A) Write and derive decomposition and reconstruction algorithms for wavelets.
 - (B) If $N = 2^q$ then prove that $C_N = E_1, E_2, \dots, E_q$ where each E_j is an N×N matrix such that each row has precisely two non Zero entries.
 - (C) How the Haar wavelet works for doing the decomposition algorithm?