Roll No. Total Printed Pages - 11

F - 521

M.A./M.Sc.(Second Semester) EXAMINATION, May-June, 2022 MATHEMATICS

Paper Third

(General and Algebraic Topology)

Time : Three Hours]

[Maximum Marks: 80

Section - A

(Objective/Multiple Choice Questions)

(1 mark each)

Note : Attempt all questions.

Choose the correct answer:

- 1. A completely regular T-, space is called......
 - (A) Normal space
 - (B) Regular space
 - (C) Tychonoff space
 - (D) Hausdorff space

2. The product of finitely many compact space is

- (A) Compact space
- (B) Open set
- (C) Null set
- (D) None of these
- 3. A countable product of first countable space is
 - (A) First countable
 - (B) Second countable
 - (C) Third countable
 - (D) Fourth countable
- A subset of Rⁿ is closed and bounded iff it is compact. This theorem is known as:
 - (A) Tychonoff theorem
 - (B) Urysohn metrization theorem
 - (C) Projection theorem
 - (D) Generalised Heine-Borel theorem
- 5. A topological space is said to be T_u-space if it is.....
 - (A) Regular and T_1
 - (B) Completely regular and T_1
 - (C) Normal and T₁
 - (D) None of these

F- 521

P.T.O.

- 6. A completely normal space which is also T_1 is called.....
 - (A) T_2 -space
 - (B) T₃-space
 - (C) T₄-space
 - (D) T₅-space
- 7. The product space $X_1 x X_2$ is connected iff
 - (A) X₁ is connected
 - (B) X_2 is connected
 - (C) Both X_1 and X_2 are connected
 - (D) None of these
- 8. Which one is not a correct statement-
 - (A) A product is first countable iff each product co-ordinate space is first countable and all except finitely many co-ordinate spaces are indiscrete.
 - (B) A topological product is second countable iff all coordinate spaces are so and except countable many are indiscrete spaces
 - (C) Let Y be seprable and let I=[01] then product Y^I is not separable
 - (D) Product of spaces is totally disconnected iff each coordinate space is so

- 9. Which of the following is false?
 - (A) Every closed subspace of a para compact space is para compact
 - (B) Every para compact space is normal
 - (C) An arbitrary space of a para compact space and product of para compact space need not be para compact
 - (D) Every metrizable space need not be para compact
- 10. Let x be a metrizable space. Then x has basis that is.....
 - (A) Uncountable locally finite
 - (B) Countable locally finite
 - (C) Countable locally Infinite
 - (D) Uncountable locally infinite
- 11. Which of the following is not an example of locally finite?
 - (A) $u = \{(n, n+z): n \in z\}$
 - (B) $u_1 = \{(0, 1/n): n \in z\}$
 - $(C) B = \{(n, 2n): n \in z\}$
 - $(D) B_1 = \{(n, 5n: n \in z\}$
- 12. Every regular Lindeloff space is
 - (A) Para compact
 - (B) Sequently compact
 - (C) Locally compact
 - (D) Countable compact
- F- 521

P.T.O.

- 13. Let x={abc}. Then which of following is not a filter
 - (A) $F_1 = \{x\}$
 - (B) $F_2 = \{\{a, b\}, x\}$
 - $(C) F_{3} = \{\{a\}, \{a, b\}, \{a, c\}, x\}$
 - (D) $F_4 = \{\{a\}, \{b\}, \{a, b\}, x\}$
- 14. Which of the following is not true?
 - (A) Two filter bases B_1 and B_2 on x are said to be equivalent iff they generate the same filter on x
 - (B) If B is a filter base on X. A filter F on X is called filter generated by B if the member of F contains a member of B
 - (C) A filter base on set X is called ultrafilter base iff it is base of an ultrafilter
 - (D) If F is a filter on X and $A \subset X$ then F is said to be eventually in a iff $A \notin F$.
- 15. Which of the following is not true?
 - (A) (N, \geq) is a directed set
 - (B) (R, \geq) is not a directed set
 - (C) Every residual subset of A is a cofinal subset of A
 - (D) Every cofinal subset of A is directed by the relation \geq

16. A net in set X is a function f: $A \rightarrow X$ where A is..... (A) Directed set (B) Residual subset (C) Cofinal subset (D) None of these 17. The fundamental group π (S'₀ b₀) of circle S' is isomorphic to: (A) Multiplicative group of integers (B) Additive group of integers (C) Additive group modulo(m) of integers (D) None of these 18. Every polynomial of n degree has exactly (A) (n-1) roots (B) (n-2) roots (C) n roots (D) 1 root 19. Let $x_0, x_1 \in X$. If there is a path in X from x_0 to x_1 then the group $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$ are: (A) Isomorphic (B) Homomorphic (C) Endomorphic (D) Homotopy F-521

[6]

- 20. Which of the following is not true
 - (A) A covering mapping is a local homeomorphism
 - (B) A covering mapping is open
 - (C) A covering mapping is onto
 - (D) A local homeomorphism is covering map
 - Section B
 - (Very Short Answer Type Questions)
 - (1.5 marks each)
- Note: Attempt all questions using 2-3 sentences.
- 1. Define wall
- 2. Define evaluation mapping
- 3. Define finitely short of topological space.
- 4. State Alexander sub-base theorem.
- 5. Define metrizable topological space.
- 6. Define locally finite of topological space
- 7. Define cluster point of a net
- 8. Define ultra filter
- 9. Define Homotopy of paths
- 10. Define covering mapping.

- [8]
- Section C
- (Short Answer Type Questions)

(2.5 marks each)

- Note : Attempt all questions precisely using less than 75 words.
- 1. Explain box and wall in cartesian product of spaces.
- 2. Prove that projection map is continuous
- 3. Prove that product space of two Hausdorff space is Hausdorff.
- 4. Let {(X,d) be a metric space and let λ be any positive real number. Then there exist a metric e on X such that $e(x,y) \leq \lambda$ } for all $x, y \in X$ and e induces the same topology or X as d does.
- Let {f_i:X→Y_i | i∈I} be a family of functions which distinguishes points from closed sets in X. Then the corresponding evaluation function e: X → π Y_i is open when regarded as i∈I function from X onto ecx)
- 6. Every tychonoff space X can be embedded as a subspace of a cube
- 7. A topological space is Hausdorff iff every net in X can converge to at most one point.

- Let {F_λ: λ ∈ ∧} be any non empty family of filters on a non empty set X. Then the set F= ∩ {F_λ: λ ∈ ∧} is also a filter on X.
- If h: (X, x₀)→Q(Y,y₀) Then (koh)* = k* oh*. If I:(X, x₀)→ (X,x₀) is the identity map, then i* is the identity homeomorphism.
- 10.If X is locally connected then a Continuous map $P:\overline{X} \to X$ is a covering map iff for each component H of X. the map $P/p^{-1}(H): p^{-1}(H) \to H$ is covering map

Section - D

(Long Answer Type Questions)

(4 marks each)

Note:- Attempt all questions precisely using 150 words.

 Let (X,T) be the product space of (X₁, T₁) and (X₂, T₂). Let π₁ : X→X₁, π₂: X→X₂ be the projection maps on first and second co-ordinate spaces respectively. Let f : Y → X be another map where Y is another topological space. Show that f is continuous iff π₁ of and π₂ of are continuous maps.

OR

The product space $X = \pi \{X_i : i \in I\}$ is a T₁-space iff each co-ordinate space is T₁

2. A product space is locally connected iff each co-ordinate space is locally connected and all except finitely many of them are connected.

OR

State and prove Tychonoff's Theorem.

3. Let $\{f_i : X \to Y_i \ \forall i \in I\}$ be a family of continuous function which distinguishes points and also distinguishes points from closed sets, then the corresponding evaluation mapping is an embedding of X into the product space $\pi_{i \in I} Y;$

OR

Let X be a regular space with a basis B that is countably locally finite. Then X is metrizable.

 Define convergence of net and let (X T) be a topological space and Y C X then show that Y is T-open iff no net in X-Y can converges to a point in Y

OR

For a filter F on a set X the following statements are equivalent:

- (i) F is an ultrafilter
- (ii) For any $A \subset X$ either $A \in$ For $X A \in$ F
- (iii) For any $AB \subseteq X$, $A \cup B \in F$ iff either $A \in F$ or $B \in F$

[11]

 If f, g and h are three paths such that f*g and g*h exist, then (f*g)*h and f*(g*h) exist and (f*g)*h ~ f*(g*h)

OR

A polynomial equation $x^n+a_{n-1}x^{n-1}+...+a_1x+a_0=0$ of degree n>0 with real or complex co efficients has at least one root.