Roll No. \qquad

F-522

M.A./M.Sc. (Second Semester)

EXAMINATION, MAY-JUNE, 2022

MATHEMATICS

Paper Fourth
[Advanced Complex Analysis (II)]

Time : Three Hours]
[Maximum Marks : 80

Note : Attempt all sections as directed.
(Section-A)
(Objective/Multiple Choice Questions)
(1 mark each)

Note- Attempt all questions.

Choose the correct answer :

1. Value of $G(z)$ is
(A) $\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n}$
(B) $\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{z / n}$
(C) $\prod_{n=1}^{\infty}\left(1-\frac{z}{n}\right) e^{-z / n}$
(D) None of these
2. The entire function e^{z} have
(A) One zero
(B) n-zeros
(C) No zeros
(D) Infinite zeros
3. Which one is the pole of Gamma function \sqrt{Z} ?
(A) 1
(B) 2
(C) 3
(D) 0
4. Euler's Gamma function is meromorphic with poles at
(A) Non-negative integers
(B) Non-positive integers
(C) Both (A) and (B)
(D) None of these
5. If $f_{2}(z)$ is an analytic continuation of $f_{1}(z)$ from domain D_{1} into D_{2}, then $D_{1} \cap D_{2}=$
(A) ϕ
(B) Non empty
(C) Complex plane
(D) None of these
6. The purpose of analytic continuation is to-
(A) Enlarge the domain
(B) Shrink the domain
(C) Restrict the domain
(D) None of the above
7. These cannot be more than one analytic continuation of a function $f(z)$ in the same domain.
(A) True
(B) False
8. The Poisson Kernel $\mathrm{P}_{r}(\theta)=\sum_{n=-\infty}^{\infty} r^{|n|} e^{i n \theta},-\infty<\theta<\infty$ is defined, when
(A) $r<0$
(B) $0 \leq r<1$
(C) $-\infty<r<\infty$
(D) None of these
9. Which of the following statement is false?
(A) ϕ is superharmonic iff $-\phi$ is subhormonic
(B) Every harmonic function is subharmonic
(C) Every harmonic function is superharmonic
(D) None of these
10. Germ of a function is defined as
(A) A function itself
(B) A domain of a function
(C) Collection of function elements
(D) None of these
11. A harmonic function is
(A) A closed map
(B) an open map
(C) Both (A) and (B)
(D) None of these

F-522
12. If G is a region such that no component of $\mathbb{C}_{\infty}-G$ reduces to a point, then G is
(A) Dirichlet region
(B) Connected region
(C) Barrier
(D) None of these
13. An entire function $f(z)$ is said to be of infinite order, if for sufficiently large value of r
(A) $\quad M(r) \leq \exp \left(r^{2}\right)$
(B) $\quad M(r) \geq \exp \left(r^{2}\right)$
(C) $M(r)>\exp \left(r^{\lambda}\right)$
(C) $M(r)<\exp \left(r^{2}\right)$
14. If $f(z)$ is an entire function of order λ and convergence exponent σ, then
(A) $\sigma \leq \lambda$
(B) $\lambda \leq \sigma$
(C) $\sigma=\lambda$
(D) None of these
15. If p is the rank of f and q is the degree of the polynomial g, then genus of f is
(A) $\mu=\min (\mathrm{p}, \mathrm{q})$
(B) $\mu=\max (p, q)$
(C) $\mu<\max (p, q)$
(D) $\mu<\min (p, q)$
16. Order of polynomial $p(z)=a_{0}+a_{1} z+\cdots \cdots \cdots \cdots+a_{n} z^{n}$, $\mathrm{a}_{\mathrm{n}} \neq 0$ is
(A) 0
(B) 1
(C) 2
(D) ∞
17. The derivative of a univalent function is
(A) Zero
(B) Non-zero
(C) Not a constant
(D) None of these
18. \lceil z is not defined at
(A) $\mathrm{z}=1$
(B) $\mathrm{z}=0$
(C) $\mathrm{z}=1 / 2$
(D) $z=-1 / 2$
19. A univalent function that maps $|\mathrm{z}|<\infty$ auto $|\omega|<\infty$ must be
(A) Constant
(B) Zero
(C) Linear
(D) Non-linear
20. A univalent map of the extended plane onto the extended plane must be
(A) Linear
(B) Bilinear
(C) Non-linear
(D) None of these

(Section- B)

(Very Short Answer Type Questions)

(2 marks each)

Note- Attempt all questions.

1. Define entire function
2. Define Gamma function.
3. State Monodromy theorem.
4. Define Green's function.
5. Define fixed-end point homotopy.
6. State little picard theorem.
7. Define univalent functions
8. Define Poisson-Kernel

(Section - C)
 (Short Answer Type Questions)

(3 marks each)

Note- Attempt all questions.

1. Prove that $\sqrt{\pi} \Gamma(2 \mathrm{z})=2^{2 \mathrm{Z-1}} \Gamma(\mathrm{z}) \Gamma\left(\mathrm{z}+\frac{1}{2}\right)$
2. State and prove Euler's theorem.
3. Show that the series $\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}$ and $\sum_{n=0}^{\infty} \frac{(z-i)^{n}}{(2-i)^{n+1}}$ are analytic continuation of each other
4. Let $\mathrm{U}: \mathrm{G} \rightarrow \mathrm{R}$ be a continuous function which has the mean value property, then u is harmonic.
5. Let G be a region and let $\mathrm{a} a \in \partial_{\infty} \mathrm{G}$ such that there is a barrier for G at a, if $\mathrm{f}: \partial_{\infty} \mathrm{G} \rightarrow \mathbb{R}$ is continuous and u is

F-522
the perron function associated with f, then
$\lim _{z \rightarrow a} u(z)=f(a)$
6. Let $f(z)$ be analytic in the closed dise $|z| \leq R$.

Assume that $f(0) \neq 0$ and no zero of $f(z)$ lie on $|z|=R$. If
$z_{1}, z_{2}, \ldots \ldots \ldots, z_{n}$ are the zeros of $f(z)$ in the open disc
$|z|<R$, each repeated as often as its multiplicity, then
$\log |f(0)|=-\sum_{i=1}^{n} \log \left(\frac{R}{\left|z_{i}\right|}\right)+\frac{1}{2 \pi} \int_{0}^{2 x} \log \left(f\left(\operatorname{Re}^{i \phi}\right) d \phi\right.$
7. State and prove Hadamard's factorization theorem
8. Let f be analytic in $D=\{z:|z|<1\}$ and let $f(0)=0$, $f^{\prime}(0)=1$ and $|f(z)| \leq m$ for all z in D. then $M \geq 1$ and $f(D) \supset B\left(0 ; \frac{1}{6 M}\right)$

Section D

(Long Answer Type Questions)

(5 marks each)

Note- Attempt all questions.

1. State and prove Weierstrass factorization theorem.

OR

