Roll No.

Total Printed Pages-10

F - 981

M.Sc. (Fourth Semester) EXAMINATION, May - June, 2022 PHYSICS

Paper First

(Nuclear and Particle Physics)

Time: Three Hours]

[Maximum Marks:80

Note: Attempt all section as directed.

(Section - A)

(Objective/Multiple Choice Questions)

(1 mark each)

Note: Attempt all questions.

Choose the correct answer:

P.T.O.

[2]

- In semiempirical Binding-energy formula the surface energy term is represented by
 - (A) $E_s = -aA^{\frac{2}{3}}$
 - (B) $E_s = aA^{\frac{2}{3}}$
 - (C) $E_s = aA^{\frac{3}{2}}$
 - (D) $E_s = -aA^{\frac{3}{2}}$
- 2. The binding energy per nucleon of helium nucleus is 7
 MeV and that of deuteron is 1 MeV then -
 - (A) Helium nucleus is more stable
 - (B) Deuteron nucleus is more stable
 - (C) Both are less stable
 - (D) Both are equally stable
- 3. The ratio of the size of $^{208}_{82}Pb$ and $^{26}_{12}Mg$ nuclei is approximately.
 - (A) 2
 - (B) 4
 - (C) 8
 - (D) 16

F - 981

- 4. The ratio of the mass defect of the nucleus to its mass number is maximum among following nuclei is
 - (A) N^{14}
 - (B) Si^{28}
 - (C) Fe^{56}
 - (D) II^{238}
- 5. The reaction $e^+ + e^- \rightarrow \mu^+ + \pi^-$ is forbidden because of
 - (A) Law of Baryon number conservation
 - (B) Law of momentum energy conservation
 - (C) Lepton number conservation
 - (D) None of the above
- 6. Which one of the following nuclear reaction is possible?
 - (A) ${}^{14}N_7 \rightarrow {}^{13}C_6 + \beta^+ + ve$
 - (B) ${}^{13}N_7 \rightarrow {}^{13}C_6 + \beta^+ + ve$
 - (C) $^{13}N_7 \rightarrow ^{13}C_6 + \beta^+$
 - (D) $^{13}N_7 \rightarrow ^{13}C_7 + \beta^+ + ve$
- 7. The volume of a nucleus in a atom is proportional to the:
 - (A) Mass number
 - (B) Proton number
 - (C) Newtron number
 - (D) Electron number

F - 981

P.T.O.

- 8. The intensity absorbed in the material or depth d with absorption co-efficient μ when I_0 is the incident intensity or X-ray is
 - (A) $(1-e^{-\mu d})$
 - (B) $I_{\circ}(1-e^{-\mu d})$
 - (C) $\mu I_{\circ} (1 e^{-\mu d})$
 - (D) μd
- 9. Which one of the following reaction is allowed?
 - (A) $p \rightarrow n + e^+$
 - (B) $p \rightarrow e^+ + ve$
 - (C) $p \rightarrow \pi^+ + r$
 - (D) $\bar{p} + n \rightarrow \pi^- + \pi^\circ$
- 10. The strangness of the particle Ω + is
 - (A) + 3
 - (B) 3
 - (C) + 2
 - (D) -2

11. The Quark structure of the particle k* is given by -

- (A) $u\overline{s}$
- (B) uud
- (C) d d u
- (D) *uus*

12. Which one of the following is correspond to an electric dipole r - transition:

- (A) $\frac{3^{+}}{2} \rightarrow \frac{1-}{2}$ (B) $\frac{3^{+}}{2} \rightarrow \frac{1^{+}}{2}$
- (C) $1^+ \rightarrow 1^+$
- (D) $3^+ \rightarrow 0^{-1}$

13. The Q - value equation of β^+ decay is given by:

- (A) $Q_{\beta^+} = [M(X) M(Y)]C^2$
- (B) $Q_{\beta^+} = [M(X) M(Y 2m_e)]C^2$
- (C) $Q_{\beta^+} = [M(Y) M(X)]C^2$
- (D) None of the above

14. Spin - parity of the nucleus $_{\circ}O^{17}$ is given by

- (A) $\frac{5^{+}}{2}$ (B) $\frac{5}{2}$ (C) $\frac{3^{+}}{2}$ (D) $\frac{3}{2}$

15. If $Q \ge 0$ then reaction is

- (A) Exothermic
- Endothermic
- (C) Both
- (D) None of the above

16. Bending energy of deuteron is:

- (A) 2.225 MeV
- (B) 3.335 MeV
- (C) 4.445 MeV
- (D) 5.555 MeV

17. Spin - parity of pseudo scalar meson is

- (A) O_+
- (B) O-
- (C) 1⁺
- (D) ₁-

18. 1 barn is equal to

- (A) $10^{-24} cm^2$
- (B) $10^{-24} m^2$
- (C) $10^{-28} cm^2$
- (D) $10^{-30} m^2$
- 19. A positive parity shell model stale can accommodate 14 nucleons, its total angular momentum j and orbital angular momentum I will be-
 - (A) $\frac{13}{2}$ and 6 (B) $\frac{13}{2}$ and 7 (C) $\frac{11}{2}$ and 6

 - (D) $\frac{11}{2}$ and 5

20. Quark structure of the particle Σ^+ is

- (A) *uus*
- (B) *uud*
- (C) uds
- (D) None of the above

Section - B

(Very Short Answer Type Questions)

(2 marks each)

Note: Attempt all questions.

- 1. What is Tensor forces?
- 2. What is Reactions cross sections?
- 3. What is parity violation?
- 4. What fundamental law of physics is most responsible for the existence of nuclear magic number?
- 5. What is Hadrons?
- 6. What is a Q value of nuclear reaction?
- 7. What do you mean by β decay?
- 8. What is compound nuclear reaction?

[10]

Section - C

(Short Answer Type Questions)

(3 marks each)

Note: Attempt all questions.

- Explain Two-nucleon system and properties of nuclear force.
- 2. Half-life period of U^{234} is 2.5×10^5 years. In how many years it will remain 25% of original amount.
- 3. What are the predominant modes for the transition-

$$2^+ \rightarrow 0^+, 1^+ \rightarrow 0^+, \frac{1^+}{2} \rightarrow \frac{1^-}{2}, \frac{9^+}{2} \rightarrow \frac{1^-}{2}$$

- 4. The only known nuclei with A = 7 are $^7\!Li_3$ and $^7\!Be_4$ whose atomic masses are $Li=7.016\mu$, $Be=7.0169\mu$. Then which of these nuclei is stable to β decay and what process is employed in the β -decay of unstable nucleus to the stable nucleus?
- 5. The total Binding energy or 15 O, 16 O, 17 O are 111.96, 127.62, and 131.76 MeV respectively. Then calculate the energy gap between $^{1}P_{\frac{1}{2}}$ and $^{1}d_{\frac{1}{2}}$ neutron shell for the nuclei whose mass number is close to 16.
- 6. A neutral pion π° whose kinetic energy is equal to its rest mass energy, decay in fright. Find the angle between two

 γ - photon that are produce in decay process and have same energy $\pi^{\circ} \to \gamma + \gamma$

- 7. Explain the fundamental interaction and leptons number.
- 8. Explain Iso-spin Formation and Exchange force.

Section - D

(Long Answer Type Questions)

(5 marks each)

Note: Attempt any four questions.

- Explain the Meson theory of nuclear forces and Yukawa
 Interaction
- 2. Explain the Breith Wigner single-level formula
- 3. Compute the energies of the pion and proton from the decay, reaction is given that $\wedge^0 \to \pi^0 + p$ where $M(\wedge^0) \approx 1116 \, MeV$, $M(\pi^-) \approx 140 \, MeV$, $M(b) \approx 938 \, MeV$
- 4. Explain the Fermi theory of β decay.
- 5. Explain Liquid drop model and semi-empirical mass formula
- 6. Explain the Quark model and properties of Quark.