Torque on a current loop in magnetic field.

\[F = iBA \]

\[\vec{F} = i \vec{B} \vec{a} \]

\[\text{Net} = 0 \]

\[\text{Net} = 0 \text{ (Torque)} \]

(since line of action of opposite forces are same)

(Note that torque = 0 when angle between magnetic field \(\vec{B} \) & magnetic moment \(\vec{M} \) is 0° here)

(Here \(\vec{M} \) is inward — using right hand curl rule)

If we rotate the loop by angle \(\theta \).

\[\text{Net} = 0 \text{ (still)} \]

But

\[\text{Net} \neq 0 \]

Horizontal forces have different line of action

\[\vec{F} \]

(Note: Now angle between \(\vec{B} \) & \(\vec{M} \) is also 0°)

See next page
When loop's plane rotate by \(\theta \) angle, Magnetic Moment \(\mathbf{M} \) (towards loop's plane always) rotates \(\theta \) from initial direction

\[\mathbf{M} \] is at \(\theta \) angle w.r.t \(\mathbf{B} \)

Consider Top View of Loop.

\[
\mathbf{F} = iB\mathbf{a}
\]

\[
F = iBA\sin \theta
\]

Torque = \[F \times l \mathbf{d} + F \times l \mathbf{d} \]

\[
= \frac{iBA}{2} b\sin \theta + \frac{iBA}{2} b\sin \theta
\]

\[
= (iBA b\sin \theta) x z
\]

\[
= iB (ab) \sin \theta \quad (ab) = \text{Area of Loop} = A
\]

\[
= iAB \sin \theta
\]

\[
\mathbf{\mathbf{M}} = MB \sin \theta
\]

\[
\mathbf{\mathbf{M}} = iA
\]
\[\vec{\tau} = \vec{M} \times \vec{B} \quad \Rightarrow \quad \vec{\tau} = MB \sin \theta \]

See that \(\vec{M} \times \vec{B} \) is in direction of Torque whereas \(\vec{B} \times \vec{M} \) isn't.

Note: Current loop behaves as Magnetic Dipole for electric dipole in Electric Field

\[\vec{\tau} = \vec{P} \times \vec{E} \]

Electric dipole Moment \(\vec{P} \)
Electric Field \(\vec{E} \)

Similarly for Magnetic Dipole (currents) in Magnetic Field

\[\vec{\tau} = \vec{M} \times \vec{B} \quad \Rightarrow \quad \vec{\tau} = MB \sin \theta \]

\(\tau \) is maximum when \(\sin \theta \to \) max \(\theta = 90^\circ \)

\[\frac{\vec{M}}{\vec{B}} \]

\(\tau \) is zero when \(\sin \theta \to \) min \(\theta = 0^\circ \) or \(180^\circ \)

\(\vec{M} \) is along \(\vec{B} \) or \(\vec{M} \) is opposite to \(\vec{B} \)

\(\theta = 0^\circ \) \hspace{1cm} \text{Equilibrium} \hspace{1cm} \theta = 180^\circ \)

\[\text{Net} = 0 \quad \text{Net} = 0 \]

\(\downarrow \) \hspace{1cm} \text{Stable} \hspace{1cm} \text{Unstable}

\text{Equilibrium} \hspace{1cm} \text{Equilibrium}
there are N turns in loop

$\mathbf{v} = N \mathbf{A} \mathbf{B} \sin \theta$

$\mathbf{v} = \mathbf{M} \mathbf{B} \sin \theta$

$\mathbf{v} = \mathbf{M} \times \mathbf{B}$

$M' = N \mathbf{A}$