INTEGERS

Subtopic: Division of integers, Properties of division of integers

Section 1

1. Mark T for True and F for False

1a. $(-100) \div 5=20$.
1b. $72 \div(-8)=-9$.
\square
2. Choose the correct answer.
$2 a$. For any integer a, dividing by 1 gives
a) Integer itself
b) 1
c) -1
d) 0

2b. For any integer a, a divided by 0 ,
a) is 1
b) is -1
c) is undefined
d) is a
3. Fill in the blanks

3a. $(-36) \div(-4)$ is equal to \qquad .

3b. $(-325) \div(-13)$ is equal to \qquad .

INTEGERS

Subtopic: Division of integers, Properties of division of integers

4. Match the following.

Column 1	Column 2	Answer here	
a) For any two integers a and b, $a \times b=$	1) a	a)	
b) For any integer $a, a \times 1=$	2) $b \times a$	b)	
c) For all integers a and b $a+b=$	3) not defined	c)	
d) For any integer $a, a+0=$	4) $b+a$	d)	
e) For any integer $a, a / 0=$	5) a	e)	

Section 2

5. Evaluate $[(-16)+5] \div[(-2)+1]$
6. Evaluate $0 \div(-12)$.
7. Verify that $a \div(b+c)$ not equal to $(a \div b)+(a \div c)$ for $a=12, b=-4, c=2$.

Subtopic: Division of integers, Properties of division of integers

8. Write three pairs of integers (a, b) such that $a \div b=-2$.

Section 3

9. Can you say $[(-16) \div 4] \div(-2)$ is the same as $(-16) \div[4 \div(-2)]$? What can you conclude?

Subtopic: Division of integers, Properties of division of integers

10. In a test +5 marks are given for every correct answer and -2 marks are given for every incorrect answer. Suraj answered all the questions and scored 30 marks though he got 10 correct answers. How many incorrect answers did he get?
