Answers \& Explanations

Section A

1. Solution:

We have, $\frac{81}{36} x^{2}-\frac{y^{2}}{25}$
$=\left(\frac{9}{6} x\right)^{2}-\left(\frac{y}{5}\right)^{2}$
$=\left(\frac{9}{6} x+\frac{y}{5}\right)\left(\frac{9}{6} x-\frac{y}{5}\right)\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$
Hence, $\frac{81}{36} x^{2}-\frac{y^{2}}{25}=\left(\frac{9}{6} x+\frac{y}{5}\right)\left(\frac{9}{6} x-\frac{y}{5}\right)$
2. Solution:

Let $P(x)=x^{2}+9 x-5+k$
$\because x-1=0 \Rightarrow x=1$
$\therefore P(1)=0$
$P(1)=1^{2}+9 \cdot 1-5+k$
$\Rightarrow 1+9-5+k=0$
$\Rightarrow k+5=0$
$\Rightarrow k=-5$
Hence, $k=-5$.

3. Solution:

We have, $\frac{9^{\frac{2}{3}}}{9^{\frac{1}{5}}}$
$=\frac{9^{\frac{2}{3}}}{9^{\frac{1}{5}}}=9^{\frac{2}{3}-\frac{1}{5}}\left[\because \frac{a^{m}}{a^{n}}=a^{m-n}\right]$
$=9^{\frac{10-3}{15}}$
$=9^{\frac{7}{15}}$

Hence, $\frac{9^{\frac{2}{3}}}{9^{\frac{1}{5}}}=9^{\frac{7}{15}}$.

OR

Solution

$(343)^{m}=\frac{49}{7^{m}}$
$(343)^{m}=\frac{7^{2}}{7^{m}}$
$\left(7^{3}\right)^{m}=7^{2-m}$
As bases are equal, we can equate the powers
$3 m=2-m$
$4 m=2$
$m=\frac{1}{2}$

4. Solution:

Given, $P(4,6)$ and $Q(-5,-7)$
\therefore Abscissa of $P=4$ and abscissa of $Q=-5$
$\therefore($ Abscissa of $P)-($ abscissa of $Q)=4-(-5)=4+5=9$
Hence, $($ abscissa of $P)-($ abscissa of $Q)=9$.

5. Solution:

Given $a=25 \mathrm{~cm}, b=20 \mathrm{~cm}, c=15 \mathrm{~cm}$
\therefore Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
To find s :

$$
\begin{aligned}
& s=\frac{1}{2}(a+b+c) \\
& s=\frac{25+20+15}{2}=\frac{60}{2}=30
\end{aligned}
$$

\therefore Area of the triangle $=\sqrt{30(30-25)(30-20)(30-15)}$

$$
=\sqrt{30 \times 5 \times 10 \times 15}=\sqrt{22500}=150 \mathrm{~cm}^{2}
$$

Hence, the area of the triangle $=150 \mathrm{~cm}^{2}$.

OR

Solution:

Given, interval $=100-110$.
Here, lower limit $=100$ and upper limit $=110$
\therefore Class mark $=\frac{\text { upper limit }+ \text { lower limit }}{2}$
$=\frac{110+100}{2}=\frac{210}{2}=105$
Hence, the class mark of the interval $100-110$ is 105 .

6. Solution:

Here, length $(l)=20 \mathrm{~m}$, breadth $(b)=20 \mathrm{~m}$ and height $(h)=10 \mathrm{~m}$.
\therefore Length of the diagonal in the cuboid $=$ Length of the longest rod
$=\sqrt{l^{2}+b^{2}+h^{2}}$
$=\sqrt{20^{2}+20^{2}+10^{2}}$
$=\sqrt{400+400+100}$
$=\sqrt{900}$
$=30 \mathrm{~m}$
Hence, the length of the longest rod $=30 \mathrm{~m}$

Section B

7. Solution:

Let $x=0 . \overline{78}$
Then, $x=0.7878$ \qquad
Multiplying 100 on both sides in equation (1), we get
$100 x=78.7878 \ldots \ldots$
On subtracting equation (1) from (2), we get
$100 x-x=78.7878-0.7878$
$\Rightarrow 99 x=78$
$\Rightarrow x=\frac{78}{99}=\frac{26}{33}$
Hence, $0 . \overline{78}=\frac{26}{33}$.

OR

Solution:

We have, $x=9-4 \sqrt{5}$
$\frac{1}{x}=\frac{1}{9-4 \sqrt{5}}=\frac{1}{9-4 \sqrt{5}} \times \frac{9+4 \sqrt{5}}{9+4 \sqrt{5}}$
$=\frac{9+4 \sqrt{5}}{81-80}=9+4 \sqrt{5}$
$\therefore x+\frac{1}{x}=(9-4 \sqrt{5})+(9+4 \sqrt{5})=18$
Hence, $x+\frac{1}{x}=18$.

8. Solution:

Let a, b be the equal and unequal sides of the isosceles triangle.
Here, $a=3 \sqrt{2} \mathrm{~cm}, b=8 \mathrm{~cm}$
\therefore Area of an isosceles triangle $=\frac{1}{4} \times b \cdot \sqrt{4 a^{2}-b^{2}}$
$=\frac{1}{4} \times 8 \cdot \sqrt{4(3 \sqrt{2})^{2}-8^{2}}$
$=2 \cdot \sqrt{72-64}=2 \cdot \sqrt{8}$
$=2 \times 2 \sqrt{2} \mathrm{~cm}^{2}$
$=4 \sqrt{2} \mathrm{~cm}^{2}$
Hence, area of an isosceles triangle is $4 \sqrt{2} \mathrm{~cm}^{2}$.

9. Solution:

The first nine prime numbers are $2,3,5,7,11,13,17,19$ and 23.
\therefore Mean $=\frac{\text { Sum of observations }}{\text { Number of observations }}$
$=\frac{2+3+5+7+11+13+17+19+23}{9}$
$=\frac{100}{9}=11.11$

Hence, the mean of the first nine prime numbers is 11.11 .

10. Solution:

Let $\mathrm{P}(\mathrm{x})$ be the polynomial $x^{997}+x^{886}+x^{775}+x^{654}+x^{113}+1$. If $(\mathrm{x}+1)$ is a factor of $\mathrm{P}(\mathrm{x})$, then $\mathrm{P}(\mathrm{x})$ should be divisible by $(x+1)$.

By remainder theorem,

If $P(x)$ is divisible by $(x-a)$, then $P(a)=0$

So, in this case we need to prove that $P(-1)=0$ to show that $x+1$ is a factor of $P(x)$
$P(-1)=(-1)^{997}+(-1)^{886}+(-1)^{775}+(-1)^{654}+(-1)^{113}+1$
A negative number raised to an odd number will result in a negative number
A negative number raised to an even number will result in a positive number

$$
P(-1)=-1+1+(-1)+1+(-1)+1=0
$$

As we have proved that $P(-1)=0$, so
Yes, $(\mathrm{x}+1)$ is a factor of $x^{997}+x^{886}+x^{775}+x^{654}+x^{113}+1$

11. Solution:

Let $\left(x-20^{\circ}\right)$ and x° be the first and second angle respectively.
We know that sum of supplementary angle is equal to 180°.

$$
\begin{aligned}
& \therefore\left(x-20^{\circ}\right)+x=180^{\circ} \\
\Rightarrow & 2 x-20^{\circ}=180^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 2 x=200^{\circ} \\
& \Rightarrow x=\frac{200^{\circ}}{2}=100^{\circ} \\
& x-20^{\circ}=100^{\circ}-20^{\circ}=80^{\circ}
\end{aligned}
$$

\therefore Larger angle $=100^{\circ}$ and smaller angle $=80^{\circ}$
Hence, the larger angle is 100°.

OR

Solution:

Let $3 x, 5 x, 6 x$ and $10 x$ be the angles of a quadrilateral.
$\therefore 3 x+5 x+6 x+10 x=360^{\circ}$
$\Rightarrow 24 x=360^{\circ}$
$\Rightarrow x=\frac{360^{\circ}}{24}=15^{\circ}$
\therefore Smallest angle $=3 \times 15^{\circ}=45^{\circ}$

12. Solution:

Area of the circle $=841 \pi \mathrm{~cm}^{2}$

Let r be the radius of the circle.
\therefore Area of the circle $=\pi r^{2}$
$\Rightarrow \pi r^{2}=841 \pi$
$\Rightarrow r^{2}=841 \Rightarrow r^{2}=29^{2}$
$\Rightarrow r=29 \mathrm{~cm}$

We know that, the length of the longest chord of the circle is diameter.
\therefore The length of the longest chord of the circle $=2 r=2 \times 29=58 \mathrm{~cm}$

Section C

13. Solution:

We have, $\frac{\sqrt{11}-1}{\sqrt{11}+1}$
$=\frac{\sqrt{11}-1}{\sqrt{11}+1} \times \frac{\sqrt{11}-1}{\sqrt{11}-1}$
$=\frac{(\sqrt{11}-1)^{2}}{\sqrt{11^{2}}-1^{2}}$
$=\frac{(\sqrt{11})^{2}+1^{2}-2 \cdot \sqrt{11} \cdot 1}{11-1}\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right.$ and $\left.a^{2}-b^{2}=(a+b)(a-b)\right]$
$=\frac{11+1-2 \cdot \sqrt{11}}{10}$
$=\frac{12-2 \cdot \sqrt{11}}{10}$
$=\frac{12}{10}-\frac{2 \cdot \sqrt{11}}{10}$
$=\frac{6}{5}-\frac{\sqrt{11}}{5}$
$\therefore \frac{6}{5}-\frac{\sqrt{11}}{5}=a-b \sqrt{11}$
$\Rightarrow a=\frac{6}{5}$ and $b \sqrt{11}=\frac{\sqrt{11}}{5}$
Hence, $a=\frac{6}{5}$ and $b=\frac{1}{5}$

14. Solution:

We have, $x^{4}+\frac{1}{x^{4}}=34$
Adding 2 on both sides, we get
$x^{4}+\frac{1}{x^{4}}+2=34+2=36$
$\Rightarrow\left(x^{2}\right)^{2}+\left(\frac{1}{x^{2}}\right)^{2}+2 \cdot x \cdot \frac{1}{x}=36$
$\Rightarrow\left(x^{2}+\frac{1}{x^{2}}\right)^{2}=6^{2}$
$\therefore x^{2}+\frac{1}{x^{2}}=6 \ldots$.

Again adding 2 on both sides in (1), we get
$x^{2}+\frac{1}{x^{2}}+2=6+2=8$
$\Rightarrow\left(x+\frac{1}{x}\right)^{2}=\sqrt{8}^{2}$
$\therefore x+\frac{1}{x}=\sqrt{8}$
Hence, $x+\frac{1}{x}=\sqrt{8}$

15. Solution:

Let α and β be the two complementary angles.
We know that sum of complementary angle is equal to 90°.
$\because \alpha+\beta=90^{\circ}$
$\therefore \alpha=90^{\circ}-\beta$
According to question,
$\beta=\frac{1}{3} \alpha$
Using (1), we get
$\beta=\frac{1}{3}\left(90^{\circ}-\beta\right)$
$\Rightarrow 3 \beta=90^{\circ}-\beta \Rightarrow 4 \beta=90^{\circ}$
$\Rightarrow \beta=\frac{90^{\circ}}{4}=22.5^{\circ}$
Putting $\beta=22.5^{\circ}$ in (1), we get
$\alpha=90^{\circ}-22.5^{\circ}=67.5^{\circ}$
Hence, larger angle $=67.5^{\circ}$

OR

Solution:

$\angle P O R+\angle R O Q=180^{\circ}$ (Linear pairs of lines)
Given, $\angle P O R: \angle R O Q=5: 15$
Therefore, $\angle P O R=\frac{5}{20} \times 180^{\circ}=45^{\circ}$

Similarly, $\angle R O Q=\frac{15}{20} \times 180^{\circ}=135^{\circ}$
Now, $\angle P O S=\angle R O Q^{\circ}=135^{\circ}$ (Vertically opposite)
and $\angle S O Q=\angle P O R=45^{\circ}$ (Vertically opposite)

16. Solution:

Given, area of the $\triangle B G C$ is 28 square units
G is the centroid.

We know that,
Area of the $\triangle B G C=\frac{1}{3} \times$ area of the $\triangle A B C$
\therefore Area of the $\triangle A B C=3 \times$ area of the $\triangle B G C$
$=3 \times 28$ square units
$=84$ square units
Hence, area of the $\triangle A B C=84$ square units.

17. Solution:

Let a be the side of the equilateral triangle.
\therefore Altitude of an equilateral triangle $=\frac{\sqrt{3}}{2} \times a$
$=\frac{\sqrt{3}}{2} \times 6 \sqrt{3} \mathrm{~cm}$
$=\sqrt{3} \times 3 \sqrt{3} \mathrm{~cm}$
$=3 \times 3 \mathrm{~cm}$
$=9 \mathrm{~cm}$
Hence, the altitude of an equilateral triangle $=9 \mathrm{~cm}$.

18. Solution:

Volume of sphere $=$ Volume of wire
Let r_{s}, r_{w} be the radius of sphere and wire respectively.
Let h be the length of the wire.
Given, radius of the sphere $\left(r_{s}\right)=7 \mathrm{~cm}$ and radius of the wire $\left(r_{w}\right)=0.3 \mathrm{~cm}$
\therefore Volume of sphere $=\frac{4}{3} \pi r_{s}^{3}=\frac{4}{3} \pi 7^{3} \mathrm{~cm}^{3}$
Volume of wire $=\pi r_{w}^{2} h=\pi(0.3)^{2} h$
According to question,
Volume of sphere $=$ Volume of wire
$\Rightarrow \frac{4}{3} \pi 7^{3}=\pi(0.3)^{2} h$
$\Rightarrow h=\frac{\frac{4}{3} \times 343}{0.09}=5081.48 \mathrm{~m}$
Hence, the length of the wire is 5081.48 m .

19. Solution:

Let the length of the first diagonal be $x \mathrm{~cm}$ and the second diagonal is $5 x \mathrm{~cm}$ respectively.
According to question,
$x+5 x=180$
$\Rightarrow 6 x=180 \Rightarrow x=30 \mathrm{~cm}$
$\therefore 5 x=5 \times 30=150 \mathrm{~cm}$
Area of rhombus $=\frac{1}{2} \times$ first diagonal \times second diagonal
$=\frac{1}{2} \times x \times 5 x$ square units
$=\frac{1}{2} \times 30 \times 150$ square units
$=2250 \mathrm{~cm}^{2}$
Hence, area of rhombus $=2250 \mathrm{~cm}^{2}$

OR

Solution:

Let each base angle of isosceles triangle $=x$
\therefore Angle at vertex $=\left(x+15^{\circ}\right)$
We know that
$\therefore\left(x+15^{\circ}\right)+x+x=180^{\circ}$
$\Rightarrow 3 x=180^{\circ}-15^{\circ}=165^{\circ}$
$\Rightarrow x=55^{\circ}$

Hence, angle at each base is 55°.

20. Solution:

According to question,

OBA is a right-angled triangle

Given, $A C=18.0 \mathrm{~cm}$
$\mathrm{OB}=\frac{A C}{2}=9.0 \mathrm{~cm}$
$\therefore O A$ is a hypotenuse.

We know that, hypotenuse is always greater than other two sides.
Hence, the radius of this circle is always greater than 9.0 cm .

21. Solution:

As we know that, in a cyclic quadrilateral, the internal opposite angle is equal to the external angle.

Given, internal opposite angle $=51^{\circ}$
\therefore External angle $=$ internal opposite angle $=51^{\circ}$

Hence, the external angle of a cyclic quadrilateral is equal to 51°.

OR

Solution:

$\sqrt{15+10 \sqrt{2}}+\sqrt{15-10 \sqrt{2}}$
Square the given expression to remove the outer square root
Using the formula $(a+b)^{2}=a^{2}+2 a b+b^{2}$

$$
\begin{aligned}
(\sqrt{15+10 \sqrt{2}} & +\sqrt{15-10 \sqrt{2}})^{2} \\
& =(\sqrt{15+10 \sqrt{2}})^{2}+2 \sqrt{15+10 \sqrt{2}} \sqrt{15-10 \sqrt{2}}+(\sqrt{15-10 \sqrt{2}})^{2} \\
= & 15+10 \sqrt{2}+2 \sqrt{15+10 \sqrt{2}} \sqrt{15-10 \sqrt{2}}+15-10 \sqrt{2}
\end{aligned}
$$

Sum of the first and the third terms simplifies to

$$
2 \sqrt{15+10 \sqrt{2}} \sqrt{15-10 \sqrt{2}}+30
$$

By Law of exponents in multiplication

$$
2 \sqrt{(15+10 \sqrt{2})(15-10 \sqrt{2})}+30
$$

Using the formula $a^{2}-b^{2}=(a+b)(a-b)$

$$
2 \sqrt{15^{2}-(10 \sqrt{2})^{2}}+30=2 \sqrt{225-200}+30=2 \sqrt{25}+30=2(5)+30=40
$$

We need to take square root of 40 as we have squared in the first step
So, answer is $\sqrt{40}=2 \sqrt{10}$

22. Solution:

The cumulative frequency, is given below:

Class	Frequency $\left(f_{i}\right)$	Cumulative Frequency
3	6	6
6	12	18
9	9	27
12	14	41
15	24	64
18	11	76
	$\sum f_{i}=76$	

$\therefore N=76$, which is even.
$\Rightarrow \frac{N}{2}=\frac{76}{2}=38$
$\Rightarrow \frac{N}{2}+1=\frac{76}{2}+1=38+1=39$
Median $=\frac{1}{2}\left\{\left(\right.\right.$ Value of $38^{\text {th }}$ term $)+\left(\right.$ Value of $39^{\text {th }}$ term $\left.)\right\}$
$=\frac{1}{2}\{12+12\}$
$=\frac{1}{2}\{24\}$
$=12$

Hence, median= 12 .

OR

Solution:

All possible outcomes are $6,7,8, \ldots \ldots, 50$.
Total number of all possible outcomes $=45$

Favourable outcomes are $7,11,13,17,19,23,29,31,37,41,43,47$.

Number of all favourable outcomes $=12$

Let E be the event of getting a prime number.
$\therefore P(E)=\frac{\text { Number of all favourable outcomes }}{\text { Total number of all possible outcomes }}=\frac{12}{45}=\frac{4}{15}$
Hence, the probability of getting a prime number $=\frac{4}{15}$

Section D

23. Solution:

Given, $x=\frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}-\sqrt{6}}$ and $y=\frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}+\sqrt{6}}$
$x=\frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}-\sqrt{6}} \times \frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}$
$x=\frac{(\sqrt{7}+\sqrt{6})^{2}}{\sqrt{7}^{2}-\sqrt{6}^{2}}=\frac{7+6+2 \cdot \sqrt{7} \cdot \sqrt{6}}{1}=13+2 \sqrt{42}$
$y=\frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}+\sqrt{6}} \times \frac{\sqrt{7}-\sqrt{6}}{\sqrt{7}-\sqrt{6}}$
$y=\frac{(\sqrt{7}-\sqrt{6})^{2}}{\sqrt{7}^{2}-\sqrt{6}^{2}}=\frac{7+6-2 \cdot \sqrt{7} \cdot \sqrt{6}}{1}=13-2 \sqrt{42}$
$\therefore x+y=13+2 \sqrt{42}+13-2 \sqrt{42}=26$
$\therefore x+y=26$

24. Solution:

Given $P(x)=2 x^{3}-5 x^{2}+3 x+7$
$2 x+1=0 \Rightarrow x=-\frac{1}{2}$
By remainder theorem, we know that when $P(x)$ is divided by $(2 x+1)$, the remainder is $P\left(-\frac{1}{2}\right)$.
Now, $P\left(-\frac{1}{2}\right)=2\left(-\frac{1}{2}\right)^{3}-5\left(-\frac{1}{2}\right)^{2}+3\left(-\frac{1}{2}\right)+7$
$=2\left(-\frac{1}{8}\right)-5\left(\frac{1}{4}\right)-\frac{3}{2}+7$
$=-\frac{1}{4}-\frac{5}{4}-\frac{3}{2}+7$
$=\frac{-1-5-6+28}{4}$
$=\frac{16}{4}$
$=4$
Hence, the required remainder is 4 .

25. Solution:

Given, $x+y+z=6$ and $x^{2}+y^{2}+z^{2}=18$
Squaring both sides, we get
$\Rightarrow(x+y+z)^{2}=6^{2}$
$\Rightarrow x^{2}+y^{2}+z^{2}+2(x y+y z+z x)=36$
$\Rightarrow 18+2(x y+y z+z x)=36$
$\Rightarrow 2(x y+y z+z x)=36-18=18$
$\Rightarrow x y+y z+z x=\frac{18}{2}=9$
$\therefore x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-(x y+y z+z x)\right)$
$=6(18-9)=54$
Hence, $x^{3}+y^{3}+z^{3}-3 x y z=54$

Solution

Since $t^{2}-1$ exactly divides the polynomial $P(t)=a_{1} t^{4}+a_{2} t^{3}+a_{3} t^{2}+a_{4} t+a_{5}$, it means $t^{2}-1$ is a factor of $P(t)$

So, $(t+1)(t-1)$ is a factor of $\mathrm{P}(\mathrm{t})$
Therefore $P(1)=0$ and $P(-1)=0$

Substituting the values in the polynomial we get

$$
\begin{gathered}
P(1)=a_{1}(1)^{4}+a_{2}(1)^{3}+a_{3}(1)^{2}+a_{4}(1)+a_{5}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=0 \\
P(-1)=a_{1}(-1)^{4}+a_{2}(-1)^{3}+a_{3}(-1)^{2}+a_{4}(-1)+a_{5}=a_{1}-a_{2}+a_{3}-a_{4}+a_{5}=0
\end{gathered}
$$

Adding the above two equations, we get

$$
\begin{gathered}
2\left(a_{1}+a_{3}+a_{5}\right)=0 \\
a_{1}+a_{3}+a_{5}=0
\end{gathered}
$$

Subtracting $\mathrm{P}(-1)$ from $\mathrm{P}(1)$

$$
\begin{gathered}
2\left(a_{2}+a_{4}\right)=0 \\
a_{2}+a_{4}=0
\end{gathered}
$$

Therefore $a_{1}+a_{3}+a_{5}=a_{2}+a_{4}=0$

26. Solution:

Let a be the side of a rhombus.

Given, perimeter of the rhombus is 48 cm
\therefore Side of the rhombus $(a)=\frac{48}{4}=12 \mathrm{~cm}$

\therefore Area of rhombus $A B C D=\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle A B C)$

Area of equilateral triangle $A B C=\frac{\sqrt{3}}{4} a^{2}$
$=\frac{\sqrt{3}}{4} \times 12 \times 12$
$=36 \sqrt{3} \mathrm{~cm}^{2}$
Area of equilateral triangle $A D C=36 \sqrt{3} \mathrm{~cm}^{2}$
\therefore Area of rhombus $A B C D=\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle A D C)$
$=(36 \sqrt{3}+36 \sqrt{3}) \mathrm{cm}^{2}$
$=72 \sqrt{3} \mathrm{~cm}^{2}$
Hence, the area of the rhombus $=72 \sqrt{3} \mathrm{~cm}^{2}$.

27. Solution:

Let r be the radius of cylinder.
Given, height $(h)=30 \mathrm{~cm}$ and volume of the cylinder $=750 \pi \mathrm{~cm}^{3}$
\therefore Volume of the cylinder $=\pi r^{2} h$
$\Rightarrow \pi r^{2} \times 30=750 \pi$
$\Rightarrow r^{2}=\frac{750 \pi}{30 \pi}=25$
$\Rightarrow r^{2}=5^{2}$
$\Rightarrow r=5 \mathrm{~cm}$
\therefore Total surface area $=2 \pi r(r+h)$
$=2 \times \frac{22}{7} \times 5 \times(5+30) \mathrm{cm}^{2}$
$=10 \times \frac{22}{7} \times 35 \mathrm{~cm}^{2}$
$=10 \times 22 \times 5 \mathrm{~cm}^{2}$
$=10 \times 110 \mathrm{~cm}^{2}$
$=1100 \mathrm{~cm}^{2}$

Hence, radius $(r)=5 \mathrm{~cm}$ and total surface area $=110 \mathrm{~cm}^{2}$.
OR

Solution:

Let h be the height of the trapezium.

Given, area of the trapezium $=350 \mathrm{~cm}^{2}$,

Sum of the parallel sides of the trapezium $=70 \mathrm{~cm}$

Area of the trapezium $=\frac{1}{2} \times($ sum of parallel sides $) \times$ height
$\Rightarrow \frac{1}{2} \times 70 \times h=350$
$\Rightarrow 35 h=350$
$\Rightarrow h=10 \mathrm{~cm}$

Hence, the height of the trapezium $=10 \mathrm{~cm}$.

28. Solution:

Let O be the centre of the given circle and P be a point such that $O P=40 \mathrm{~cm}$

Let PT be tangent such that $P T=32 \mathrm{~cm}$
Join OT.
Now, PT is a tangent at T and OT is the radius through T .
$\therefore O T \perp P T$
In the right $\triangle O T P$, we have
By Pythagoras's Theorem,
$O P^{2}=O T^{2}+P T^{2}$
$O T=\sqrt{O P^{2}-P T^{2}}$
$=\sqrt{40^{2}-32^{2}}=\sqrt{1600-1024}=\sqrt{576}=24 \mathrm{~cm}$
Hence, radius of the circle is 24 cm .

29. Solution:

Let $b c m$ be the unequal side of an isosceles triangle.
Here, perimeter of an isosceles triangle $=64 \mathrm{~cm}$ and equal sides $(a)=20 \mathrm{~cm}$.
\therefore Perimeter of an isosceles triangle $=(2 a+b) \mathrm{cm}$
$\Rightarrow(2 \times 20)+b=64$
$\Rightarrow b=64-40=24 \mathrm{~cm}$
\therefore Area of an isosceles triangle $=\frac{1}{4} b \sqrt{4 a^{2}-b^{2}}$ square units
$=\frac{1}{4} \times 24 \sqrt{4 \times 20^{2}-24^{2}} \mathrm{~cm}^{2}$
$=\frac{1}{4} \times 24 \sqrt{4 \times 400-576} \mathrm{~cm}^{2}$
$=6 \times \sqrt{1600-576} \mathrm{~cm}^{2}$
$=6 \times \sqrt{1024} \mathrm{~cm}^{2}$
$=6 \times 32 \mathrm{~cm}^{2}=192 \mathrm{~cm}^{2}$
Hence, Area of the isosceles triangle $=192 \mathrm{~cm}^{2}$.
OR

Solution:

All possible outcomes are $14,15,16, \ldots \ldots ., 77$.

Total number of all possible outcomes $=64$

Favourable outcomes are $14,21,28,35,42,49,56,63,70,77$.

Number of all favourable outcomes $=10$

Let E be the event of getting a number is divisible by 7 .
$\therefore P(E)=\frac{\text { Number of all favourable outcomes }}{\text { Total number of all possible outcomes }}=\frac{10}{64}=\frac{5}{32}$

Hence, the probability of the number is divisible by $7=\frac{5}{32}$.

30. Solution:

We prepare the cumulative frequency, as given below:

Class	Frequency (f_{i})	$f_{i} \times x_{i}$
3	6	18
5	8	40
7	15	105
9	p	9 p
11	8	88
13	4	52
	$\sum f_{i}=41+p$	$\sum f_{i} \times x_{i}=303+9 p$
$\therefore \text { Mean }=\frac{\sum f_{i} \times x_{i}}{\sum f_{i}}$		
$=\frac{303+9 p}{41+p}$		
$\Rightarrow \frac{303+9 p}{41+p}=8$		
$\Rightarrow 303+9 p=8 p+328$		

Hence, $p=25$

