VI Semester B.Sc. Examination, May/June 2014 (NS) (2013-14 and Onwards) PHYSICS - VII

At	om	nic and Molecular Physics, Nuclear Physics and Material Scien	ice
Tim	e::	3 Hours notenpem into 8 to sullay Max. Marks	s:70
		Instruction: Answer five questions from each Part. PART – A	
An	SW	er any five of the following, each question carries eight marks (5×8	3=40)
1. A	a)	Give the qualitative account of effect of finite nuclear mass in Rydberg constant.	30)
	b)	Explain the concept of elliptical orbits of Sommerfeld relativistic atom mode with associated quantum numbers.	(3+5)
2.	,	Give the quantum mechanical theory of normal Zeeman effect. Distinguish between normal and anomalous Zeeman effect.	(6+2)
3.	a)	Write a note on Rayleigh scattering of light. What is Raman effect? Discuss the quantum theory of Raman effect.	(3.45) 6 15. A
	8		(3+5)
4.		What are the assumptions of Rutherford's theory of alpha scattering? Assuming the relation between impact parameter and scattering angle arrive at the Rutherford's scattering formula.	e (2+6)
5.	a)	What are the different types of beta-decay?	
	b)	What are the salient features of beta-ray spectrum and how are they accounted for by neutrino hypothesis.	(3+5)
6.		Describe with theory the construction and working of cyclotron. What are the limitations of cyclotron?	(6+2)
7.	,	Write a note on bottom up method of synthesis of nanomaterials.	(2.6)
0		Are most energetic alpha emitters are long lived? Explain	(2+6)
8.		Write a note on cholesteric and smectic liquid crystals with necessary diagram What are the different types of liquid crystals?	(6+2)

PART-B

Answer any five of the following, each problem carries four marks.

(5×4=20)

9. $h = 6.6625 \times 10^{-34}$ J-S, $m_e = 9.1 \times 10^{-31}$ Kg, $e = 1.6 \times 10^{-19}$ C, 1 amu = 1.67×10^{-27} Kg, $\epsilon_0 = 8.854 \times 10^{-12}$ Fm⁻¹.

Calculate the value of Bohr magneton.

- 10. In a Stern-Gerlach experiment silver atoms traverse a distance of 0.1 m through non-uniform magnetic field of gradient 55 Tm $^{-1}$. If the separation between the two traces on the collector plate is 0.13 mm, find the velocity of silver atoms. Mass of silver atom is 1.79 \times 10 $^{-25}$ Kg and Bohr magneton = 9.27 \times 10 $^{-24}$ JT $^{-1}$.
- 11. The force constant of CO bond is $150 \, \text{Nm}^{-1}$. Find the frequency of vibration CO molecule and spacing between vibrational levels. Mass of $^{12}\text{C} = 12$ amu and $^{16}\text{O} = 16$ amu.
- 12. The kinetic energy of alpha particle is 8.02 MeV. Calculate the impact parameter when it is bombarded on gold nucleus (z = 79) so that it gets scattered through 90° or more.
- 13. Thorium-228 emits alpha particles of energy 5.42 MeV. Calculate alphadisintegration energy.
- 14. The Q-value of the reaction 23 Na(p, n) 23 Mg is -4.85 MeV. Calculate its threshold energy. Given mass of 23 Na = 22.989773 amu and proton = 1.007825 amu.
- 15. A parallel plate capacitor of capacitance 1.14 nF has its plates separated by 4 mm and a potential of 30 V applied across them. If a material of dielectric constant 8 is introduced between the plates, calculate the charge stored and the polarization.
- 16. The atomic weight and density of silicon are 28 and $1.98 \times 10^3 \, \text{Kgm}^{-3}$ respectively. The electronic polarizability of the atom is $3.18 \times 10^{-40} \, \text{Fm}^2$. If the silicon has cubic structure, calculate the dielectric constant.

PART-C

Answer any five of the following, each question carries two marks.

 $(5 \times 2 = 10)$

- 17. a) Can the principal quantum number take zero in hydrogen atom? Explain.
 - b) The alkali metals have hydrogen-like spectra, why?
- c) Do the spectral lines in pure rotational spectra equally spaced? Explain.
 - d) What is the significance of distance of closest approach in Rutherford's alpha scattering?
 - e) Are most energetic alpha emitters are long lived? Explain.
 - f) Can G. M. counter be used to detect neutron? Justify.
- g) Is the field experienced by an atom in a dielectric same as applied electric field?
 - h) Can discotic liquid crystals have chiral nematic type?