

VI Semester B.Sc. Examination, May 2016 (NS) (2013-14 and Onwards) PHYSICS – VII

Atomic and Molecular Physics, Nuclear Physics and Material Science

Time: 3 Hours Max. Marks: 70

Instruction: Answer five questions from each Part.

		Instruction: Answertive questions from each Part.	
		PART – A Loos constant of CO molecule PART – A PART – A loos of the Janob entitle sections of the Part – A	
Ar	isw	erany five of the following questions. Each question carries eight marks. (5	5×8=40)
1.	,	What are the limitations of Bohr's model of atom? Write a note on spatial quantisation and spin of electron.	(2+6)
2.	,	Distinguish between normal and anomalous Zeeman effect. Explain Debye's quantum theory of normal Zeeman effect.	(2+6)
3.		Distinguish between Rayleigh scattering and Raman scattering. Explain quantum theory of Raman effect and obtain the expression for Ranshift.	nan (2+6)
4.		State the assumptions of theory of Rutherford's alpha ray scattering. Obtain the relation between the impact parameter and angle of scattering alpha ray scattering.	in (2+6)
5.		Derive an expression for the Q value of alpha decay. Write a note on Geiger-Nuttal law.	(5+3)
6.		With the help of diagram, explain the construction and working of a cyclotr Arrive at the expression for maximum energy of emerging particle.	on. (5+3)
7.	,	What are top-down and bottom-up methods of synthesis of nanomaterials What are zero, one and two dimensional nanosystems? Give one example each.	
8.		Explain different types of thermotropic liquid crystals. Mention any two applications of liquid crystals.	(6+2)

PART-B

Solve any five of the following problems. Each problem carries four marks. (5x4=20)

- 9. Find the value of Bohr magneton. Given, Planck's constant, $h = 6.625 \times 10^{-34} \, \text{Js}$, mass of electron $m_a = 9.1 \times 10^{-31} \, \text{kg}$, charge on the electron $e = 1.602 \times 10^{-19} \, \text{C}$.
- 10. In a Stern-Gerlach experiment silver atoms traverse a distance of 0.1 m through a non-uniform magnetic field of gradient 60 Tm⁻¹. If the separation between two tracings on the recording plate is 0.15 mm. Find the velocity of silver atoms. (mass of silver atom = 1.79×10^{-25} kg, Bohr magneton = 9.28×10^{-24} JT⁻¹).
- 11. The force constant of CO molecule is 187 Nm⁻¹. Find the frequency of vibration of CO molecule and spacing between the vibrational levels. (The reduced mass of CO molecule is 1.145×10^{-26} kg).
- 12. An α -particle of energy 10 MeV is moving towards gold nucleus (Z = 79). Calculate the distance of closest approach.
- Potassium-40 decays into calcium by beta emission. Find the Q value of reaction. Given, mass of potassium atom is 39.96399 U, mass of calcium atom is 39.96259 U.
- 14. The Q value of reaction $_5B^{10}$ (n α) $_3Li^7$ is 2.7935 MeV. Calculate Threshold energy. Given mass of $_5B^{10}$ atom is 10.012394 U, and mass of neutron is 1.008665 U.
- 15. If a sodium-chloride crystal is subjected to an electric field of 1000 Vm $^{-1}$ and resulting polarization is 4.3×10^{-8} cm $^{-2}$. Calculate the dielectric constant.
- 16. The electronic polarization of the atom is 3.28×10^{-40} Fm². If the sulphur solid has cubical symmetry, calculate its dielectric constant. (Given N = 3.914×10^{28} m⁻³).

PART-C

Answer any five of the following questions. Each question carries two marks. (5×2=10)

- 17. a) The path of an electron is a rosette according to Sommerfield Model. Explain.
 - b) The alkali metals have hydrogen-like spectra. Explain.
 - c) Do the electrons of target atom affect the scattering of alpha particles ? Explain.
 - d) Can there be a transition from E₃ to E₄ of rotational energy levels? Explain.
 - e) Is alpha ray spectrum discrete or continuous? Explain.
- f) Can G-M counter detect neutrons? Explain.
 - g) Do polar dielectric material posses dipole moment in absence of external electric field ? Explain.
 - h) Does the colour of liquid crystals change with temperature? Explain.