MS - 280

VI Semester B.A./B.Sc. Examination, May/June 2014 (Semester Scheme) (2013-14 and Onwards) (N.S.) MATHEMATICS (Paper – VII)

Time: 3 Hours Max. Marks: 100

Instruction: Answer all questions.

I. Answer any fifteen questions:

(15×2=30)

- 1) Find the locus of the point z satisfying $|z-1| \le 4$.
- 2) Evaluate $\lim_{\substack{i\frac{\pi}{4} \\ z \to e}} \left(\frac{z^2}{z^4 + z^2 + 1}\right)$. Thus will fact ever mercent several prize (7)
- 3) Show that $f(z) = \cos z$ is an analytic function.
- 4) Prove that $u = x^3 3xy^2$ is a harmonic function.
- 5) Define bilinear transformation.
- 6) Evaluate $\int_{C} (\overline{z})^2 dz$ around the circle |z| = 1.
- 7) Evaluate $\int_{C}^{\infty} \frac{\cos \frac{\pi}{3} z}{z-1} dz$ where $C: |z| = \frac{3}{2}$.
- 8) State Liouville's theorem.
- 9) Evaluate $\int_C \left[\left(x^2 y \right) dx + \left(y^2 + x \right) dy \right]$ where C is the curve given by $x = t, y = t^2 + 1, \ 0 \le t \le 1$.
- 10) Show that $\int_{0}^{1} \int_{0}^{\sqrt{3}} \frac{dx \, dy}{(1+x^2)(1+y^2)} = \frac{\pi^2}{12}$. u = (x) notional physics and brift (1)
- 11) Evaluate $\int_{0}^{1} \int_{0}^{\frac{\pi}{2}} r^{3} \sin^{2} \theta \, d\theta \, dr$

- 12) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2 + y^2)} dx dy$ by changing into polar coordinates.
- 13) Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x^{2}yz \, dx \, dy \, dz$.
- 14) State Green's theorem in the plane.
- 15) Show that $\iiint\limits_V \ div \left(x \hat{i} + y \hat{j} + z \hat{k}\right) dv = 3v.$
- 16) Using Stokes theorem prove that div $\left(\operatorname{curl} \vec{F}\right) = 0$.
- 17) Define interior point on topology.
- 18) State Bolzano-Weierstrass theorem on R.
- 19) Write all possible topologies for $X = \{3, 4\}$.
- 20) Define sub base for a topology.
- II. Answer any four questions.

 $(4 \times 5 = 20)$

- 1) Show that the locus of a point z satisfying amp $\left(\frac{z-1}{z+2}\right) = \frac{\pi}{3}$ is a circle. Find its centre and radius.
- 2) If f(z) = u + iv be an analytic function in the domain D of a complex plane then u = c₁ and v = c₂. Where c₁ and c₂ are constants represents orthogonal family of curves.
- 3) Find the analytic function whose imaginary part is $tan^{-1} \frac{y}{x}$ and hence find its real part.
- 4) Find the analytic function f(z) = u + iv given that $u v = e^{x}(\cos y \sin y)$.
- 5) Discuss the transformation $w = z^2$.
- 6) Find the bilinear transformation which maps the points 1, −i, −1 on to the points 0, i, ∞.

III. Answer any two questions.

 $(2 \times 5 = 10)$

- 1) Evaluate $\int_C \frac{\sin \pi \ z^2 + \cos \pi \ z^2}{\left(z-1\right)\left(z-2\right)} \, dz$ where C is the circle $\left| \ z \ \right| = 4$.
- 2) Show that $\oint_C \frac{e^{2z}}{(z-2)^3} dz = 4\pi i e^4$ where C is the circle |z| = 3.
- 3) State and prove the fundamental theorem of algebra in complex variables.

IV. Answer any four questions:

 $(4 \times 5 = 20)$

- 1) Evaluate $\iint_{R} xy(x+y) dx dy$ over the domain D between $y^2 = x$ and y = x.
- 2) Evaluate $\int_{0}^{1} \int_{y}^{1} (x^2 + y^2) dx$ dy by changing the order of integration.
- 3) Show that $\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} \left(x^2+y^2\right) dy \ dx = \frac{3\pi a^4}{4}$ by changing into polar coordinates.
- 4) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 x^2}} \int_{0}^{\sqrt{a^2 x^2 y^2}} \frac{dx \, dy \, dz}{\sqrt{a^2 x^2 y^2 z^2}}$
- 5) Find the surface area of the sphere $x^2 + y^2 + z^2 = a^2$ by using double integration.
- 6) Evaluate $\iiint\limits_R xyz\ dx\ dy\ dz$ where R is the positive octant of the sphere $x^2+y^2+z^2=a^2$ by transforming in to cylindrical polar coordinates.

V. Answer any two questions.

 $(2 \times 5 = 10)$

1) Using Green's theorem evaluate

 $\int_{C} \left[e^{-x} \sin y \, dx + e^{-x} \cos y \, dy \right] \text{ where C is the rectangle with vertices (0, 0),}$

$$\left(0,\frac{\pi}{2}\right),\left(\pi,\frac{\pi}{2}\right),\left(\pi,0\right).$$

III. Answer any two questions.

 $(2 \times 5 = 10)$

- 1) Evaluate $\int_C \frac{\sin \pi \ z^2 + \cos \pi \ z^2}{\left(z-1\right)\left(z-2\right)} \, dz$ where C is the circle $\left| \ z \ \right| = 4$.
- 2) Show that $\oint_C \frac{e^{2z}}{(z-2)^3} dz = 4\pi i e^4$ where C is the circle |z| = 3.
- 3) State and prove the fundamental theorem of algebra in complex variables.

IV. Answer any four questions:

 $(4 \times 5 = 20)$

- 1) Evaluate $\iint_{R} xy(x+y) dx dy$ over the domain D between $y^2 = x$ and y = x.
- 2) Evaluate $\int_{0}^{1} \int_{y}^{1} (x^2 + y^2) dx$ dy by changing the order of integration.
- 3) Show that $\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} \left(x^2+y^2\right) dy \ dx = \frac{3\pi a^4}{4}$ by changing into polar coordinates.
- 4) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 x^2}} \int_{0}^{\sqrt{a^2 x^2 y^2}} \frac{dx \, dy \, dz}{\sqrt{a^2 x^2 y^2 z^2}}$
- 5) Find the surface area of the sphere $x^2 + y^2 + z^2 = a^2$ by using double integration.
- 6) Evaluate $\iiint\limits_R xyz\ dx\ dy\ dz$ where R is the positive octant of the sphere $x^2+y^2+z^2=a^2$ by transforming in to cylindrical polar coordinates.

V. Answer any two questions.

 $(2 \times 5 = 10)$

1) Using Green's theorem evaluate

 $\int_{C} \left[e^{-x} \sin y \, dx + e^{-x} \cos y \, dy \right] \text{ where C is the rectangle with vertices (0, 0),}$

$$\left(0,\frac{\pi}{2}\right),\left(\pi,\frac{\pi}{2}\right),\left(\pi,0\right).$$

III. Answer any two questions.

 $(2 \times 5 = 10)$

- 1) Evaluate $\int_C \frac{\sin \pi \ z^2 + \cos \pi \ z^2}{\left(z-1\right)\left(z-2\right)} \, dz$ where C is the circle $\left| \ z \ \right| = 4$.
- 2) Show that $\oint_C \frac{e^{2z}}{(z-2)^3} dz = 4\pi i e^4$ where C is the circle |z| = 3.
- 3) State and prove the fundamental theorem of algebra in complex variables.

IV. Answer any four questions:

 $(4 \times 5 = 20)$

- 1) Evaluate $\iint_{R} xy(x+y) dx dy$ over the domain D between $y^2 = x$ and y = x.
- 2) Evaluate $\int_{0}^{1} \int_{y}^{1} (x^2 + y^2) dx$ dy by changing the order of integration.
- 3) Show that $\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} \left(x^2+y^2\right) dy \ dx = \frac{3\pi a^4}{4}$ by changing into polar coordinates.
- 4) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 x^2}} \int_{0}^{\sqrt{a^2 x^2 y^2}} \frac{dx \, dy \, dz}{\sqrt{a^2 x^2 y^2 z^2}}$
- 5) Find the surface area of the sphere $x^2 + y^2 + z^2 = a^2$ by using double integration.
- 6) Evaluate $\iiint\limits_R xyz\ dx\ dy\ dz$ where R is the positive octant of the sphere $x^2+y^2+z^2=a^2$ by transforming in to cylindrical polar coordinates.

V. Answer any two questions.

 $(2 \times 5 = 10)$

1) Using Green's theorem evaluate

 $\int_{C} \left[e^{-x} \sin y \, dx + e^{-x} \cos y \, dy \right] \text{ where C is the rectangle with vertices (0, 0),}$

$$\left(0,\frac{\pi}{2}\right),\left(\pi,\frac{\pi}{2}\right),\left(\pi,0\right).$$

- 2) State and prove the Gauss divergence theorem.
- 3) Verify Stoke's theorem for the function $\vec{F}=y^2\hat{i}+xy\hat{j}-xz\hat{k}$, where S is the hemisphere $x^2+y^2+z^2=a^2,\ z\geq 0$.

VI. Answer any two questions.

(2×5=10)

- 1) Prove that the union of an arbitrary collection of open sets is open.
- 2) Define topological space. Let $X = \{m, n\}$ and $\tau = \{X, \phi, \{m\}, \{n\}\}$ then show that τ is a topology on X.
- 3) If (X, τ) be a topological space and $A, B \subset X$ then prove that

i)
$$A \subset B \Rightarrow A^{\circ} \subset B^{\circ}$$

ii)
$$(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$$
.

4) Show that every convergent sequence is a Cauchy sequence.

VI Semester B.A./B.Sc. Examination, May/June 2014 (Semester Scheme) (N.S.) (2013-14 & Onwards) MATHEMATICS – VIII

Time: 3 Hours Max. Marks: 100

Instruction: Answerall questions.

I. Answer any fifteen questions:

(15×2=30)

- 1) A particle is moved by a force $3\hat{i} 4\hat{j} 6\hat{k}$ along a straight line from a point A to B with position vectors $2\hat{i} 3\hat{j} + 4\hat{k}$ and $4\hat{i} + 5\hat{j} 6\hat{k}$ find the work done.
- 2) A particle starting and executing SHM with period 6 seconds travels 12 meters in 2 seconds: Find the amplitude of the particle.
- 3) A cricket ball is thrown with a velocity of 30 mts/sec, find the greatest range on horizontal plane.
- 4) Find the velocity of projection of a particle when the horizontal range 12 ft and elevation is 15°.
- 5) Mention the equation of motion when a particle moves inside a smooth verticle circle.
- 6) Define apsidal distance.
- 7) Derive the law of force for a particle describing the central orbit. Whose pedal equation is $pr = a^2$?
- 8) Write the formula for transverse velocity and transverse acceleration.
- 9) Define variational problem.
- 10) Obtain the differential equation of the variation problem $\int_{x_1}^{x_2} [y^1(1+x^2y^1)] dx$.

- 11) Show that the Eulers equation for the extremum of $\int_{x_1}^{x_2} [y^2 + (y^1)^2 + 2y e^x] dx$ reduce to $y'' y = e^x$.
- 12) Show that the functional $\int_{x_1}^{x_2} [y^2 + x^2y^1] dx$ assumes extreme values on the straight line y = x.
- 13) Find the positive root of the equation $x^3 3x 5 = 0$ which lies between 2 and 2.5 by bisection method (use one approximation).
- 14) Find the first approximation root of $x^3 2x 5 = 0$ lying between 2 and 3 by Regula-Falsi method.
- 15) Find the real root of the equation $x^3 x 2 = 0$ over interval (1.5, 2) upto two approximation by bisection method.
- 16) Find the largest eigen value of $\begin{pmatrix} -4 & -5 \\ 1 & 2 \end{pmatrix}$ by power method.
- 17) Solve $\frac{dy}{dx} = x + y^2$, y(0) = 1 By Picards method upto first approximation. Find the value of y(0.1).
- 18) Write the Tayler's series formula for the numerical solution of the differential equation $\frac{dy}{dx} = t(x, y)$ with intial condition $y(x_0) = y_0$.
- 19) Solve: $y_{x+2} 2y_{x+1} + y_x = 0$ by the method of differences.
- 20) Solve: $y_{x+1} y_x = x^2$.
- II. Answer any three of the following:

(3×5=15)

1) Show that $\vec{F} = (x^2y - 2^3)\hat{i} + (3xyz + xz^2)\hat{j} + (2x^2yz + yz^4)\hat{k}$ is not conservative.

2) At the end of three consecutive seconds the distances of a partile moving with SHM from its mean position are x₁, x₂ and x₃. Show that the time for one

complete oscillation is
$$\frac{2\pi}{\cos^{-1}\left(\frac{x_1+x_3}{2x_2}\right)}.$$

- 3) Show that the path traced by a projectile is a parabola.
- 4) A particle is thrown over a triangle form one end of a horizontal base and grazing over the vertex falls on the other end of the base. If A and B be the base angles of the triangle and α the angle of projection show that tan α = tan A + tan B.

III. Answer any two of the following:

 $(2 \times 5 = 10)$

- 1) Derive with usual notation for a central orbit $\frac{d^2u}{d\theta^2} + u = \frac{f}{h^2u^2}$.
- 2) If the central orbit is $r = atan\theta$ show that the magnitude of acceleration towards the centre of force is $h^2u^3(3 + 2a^2u^2)$ also find the velocity in terms of r.
- 3) A particle describes the curve $r^2 = a^2 \sin 2\theta$ under a force to the pole. Find the law of force.
- 4) A particle describes a cycloid with uniform speed. Show that the normal acceleration at any point varies inversly as the square root of the distance from the base of the cycloid.

IV. Answer any three of the following:

 $(3 \times 5 = 15)$

1) Prove that necessary condition for the integras $I = \int_{x_1}^{x_2} f(x, y, y^1) dx$ where $y(x_1) = y_1$

and
$$y(x_2) = y_2$$
 to be an extremum is that $\frac{\partial x}{\partial y} - \frac{d}{dx} \left(\frac{\partial x}{\partial y^1} \right) = 0$.

2) Find the extremal of the function $\int_{1}^{2} [x^{2}(y^{1})^{2} + 2y(x+y)] dx = 0$ given that y(1) = y(2) = 0.

- 3) Show that geodesic of a sphere of radus a are its greatest circle.
- 4) Find the extremal of the functional $\int_{0}^{1} [(y^{1})^{2} + x^{2}] dx$ subject to the constraint $\int_{0}^{1} y dx = 2$ and having end conditions y(0) = 0, y(1) = 1.

V. Answer any three of the following:

 $(3 \times 5 = 15)$

- 1) Solve $x^3 + 4x + 1 = 0$ for the real root lying between 2 and 3 by Regula Falsi method.
- 2) Use Newton Raphson method to find a real root of the equation $x^3 2x 5 = 0$ correct to three decimal places.
- 3) Solve the equations 10x + y + z = 12; 2x + 10y + z = 13; 2x + 2y + 10z = 1y. Using Zacobian method correct to three decimal places.
- 4) Find the greatest eigen value of the matrix $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ by power method.

VI. Answer any three of the following:

 $(3 \times 5 = 15)$

- 1) Use Taylors series method to find $\frac{dy}{dx} = x^2 + y^2$ given y(0) = 1 for x = 0.1, 0.2 considering terms up to 3^{rd} degree.
- 2) Solve: $\frac{dy}{dx} = y x^2$, y(0) = 1 by Picards method upto 3^{rd} approximation.
- 3) Solve using Runge Kutta method $\frac{dy}{dx} = x + y$, y(0) = 1 for x = 0(.2).4.

OR

Form the difference equation by eliminating a and b from the relation $y_n = a\cos \alpha + b\sin \alpha$.

4) Solve the difference equation

$$(E^3 - 5E^2 + 3E + 9)y_n = 2^n + 3^n$$
.