Roll No.

E - 765

M. A./M. Sc. (Third Semester) EXAMINATION, Dec.-Jan., 2020-21

MATHEMATICS

Paper Third (C)

(Fuzzy Set and Their Application)

Time: Three Hours [Maximum Marks: 80

Note: Attempt all Sections as directed.

Section—A

1 each

(Objective/Multiple Choice Questions)

Note: Attempt all questions.

Choose the correct answer:

1. Which one of the following is triangular membership function?

(a)
$$A(x) = \begin{cases} 0 & x \le 20, x \ge 60 \\ \frac{x - 20}{15} & 20 < x < 35 \\ \frac{60 - x}{15} & 45 < x < 60 \\ 1 & 35 \le x \le 45 \end{cases}$$

(b)
$$A(x) = \begin{cases} \frac{x-6}{2} & 6 \le x \le 8\\ \frac{10-x}{2} & 8 < x \le 10\\ 0 & \text{otherwise} \end{cases}$$

- (c) Both (a) and (b)
- (d) None of the above
- 2. If:

$$A = \frac{0.2}{x_1} + \frac{0.5}{x_2} + \frac{0.6}{x_3}$$

and

$$B = \frac{0.1}{x_1} + \frac{0.4}{x_2} + \frac{0.5}{x_3}$$

then $A \sim B$ is:

(a)
$$\frac{0.2}{x_1} + \frac{0.5}{x_2} + \frac{0.5}{x_3}$$

(b)
$$\frac{0.1}{x_1} + \frac{0.4}{x_2} + \frac{0.5}{x_3}$$

(c)
$$\frac{0.8}{x_1} + \frac{0.5}{x_2} + \frac{0.4}{x_3}$$

- (d) None of the above
- 3. Which one of the following properties is not true in fuzzy set?

(a)
$$(A \cap B)^C = A^C \cup B^C$$

(b)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

(c)
$$A \cup \phi = A, A \cap X = A$$

(d)
$$A \cup A^C = X, A \cap A^C = \phi$$

4. The algebraic sum of *t*-conorm is defined by :

(a)
$$u(a, b) = \max(a, b)$$

(b)
$$u(a, b) = a + b - ab$$

(c)
$$u(a, b) = \min(1, a + b)$$

(d)
$$u(a, b) = \begin{cases} a & \text{when } b = 0 \\ b & \text{when } a = 0 \\ 1 & \text{otherwise} \end{cases}$$

5. The threshold type complements is defined by :

(a)
$$C(a) = 1 - a$$

(b)
$$C(a) = \frac{1-a}{1+\lambda a}$$

(c)
$$C(a) = \begin{cases} 1 & \text{for } a \le t \\ 0 & \text{for } a > t \end{cases}$$

(d) None of the above

6. u_{max} , i_{min} and C(a) = 1 - a operation on fuzzy sets satisfies:

- (a) De Morgan law
- (b) Law of excluded middle
- (c) Law of contradiction
- (d) All of the above

7. Fuzzy set D defined on $Y = \{0, 1, 4, 9, \dots, 100\}$ by :

$$D = \frac{.5}{4} + \frac{.6}{16} + \frac{.7}{25} + \frac{1}{100}$$

where $f: X \to Y$ defined as $f(x) = x^2$ and $X = \{0, 1, 2, \dots, 10\}$. The value of $f^{-1}(D)$ if x = 4:

(a) 0.5

[4] E-765

- (b) 0.6
- (c) 0.7
- (d) 1
- 8. Which one of the following conditions is correct for a fuzzy number A?
 - (a) A must be a normal fuzzy set.
 - (b) α A must be a closed interval.
 - (c) The support of A i.e. ⁰⁺A must be bounded.
 - (d) All of the above
- 9. Let A and B be two closed intervals such that $A = [a_1, a_2]$, $B = [b_1, b_2]$. Then B A is:
 - (a) $[b_2 a_2, b_1 a_1]$
 - (b) $[b_1 a_1, b_2 a_2]$
 - (c) $[b_1 a_2, b_2 a_2]$
 - (d) None of the above
- 10. Let R (x, y) is a fuzzy relation defined on the fuzzy sets X and Y. Then height of the fuzzy relation R (x, y) is:
 - (a) $\max_{y \in Y} \max_{x \in Y} R(x, y)$
 - (b) $\min_{y \in Y} \min_{x \in Y} R(x, y)$
 - (c) $\max_{y \in Y} \min_{x \in Y} R(x, y)$
 - (d) None of the above

- 11. Let R be a fuzzy partial ordering defined on set X. An element $x \in X$ is called undominated iff:
 - (a) $R(y, x) = 0 \forall y \in X \text{ and } y \neq x$
 - (b) $R(x, y) = 0 \forall y \in X \text{ and } y \neq x$
 - (c) $R(y, x) = 1 \forall y \in X \text{ and } y \neq x$
 - (d) None of the above
- 12. The fuzzy relation R (x, y) is called tolerance or compatibility if:
 - (a) R is reflexive, symmetric and transitive.
 - (b) R is symmetric and transitive.
 - (c) R is reflexive and transitive.
 - (d) R is reflexive and symmetric.
- 13. The relational join P * Q corresponding to the standard max min composition is a ternary relation R (x, y, z) defined by :
 - (a) $R(x, y, z) = \max [P(x, y), Q(y, z)]$
 - (b) $R(x, y, z) = \max \min [P(x, y), Q(y, z)]$
 - (c) R(x, y, z) = min[P(x, y), Q(y, z)]
 - (d) None of the above
- 14. If ${}^{\alpha}A = [2, 4]$ and ${}^{\alpha}B = [3, 6]$, then the solution of equation ${}^{\alpha}A + {}^{\alpha}X = {}^{\alpha}B$ is :
 - (a) [1, 2]
 - (b) [4, -1]
 - (c) [-1, 4]
 - (d) None of the above

15. If $R_{12}(0, 0) = 0.9$, $R_{13}(0, 2) = 0.8$, $R_{23}(0, 2) = 0.2$, then cylindric closures Cyl (R_{12}, R_{13}, R_{23}) is:

- (a) 0.9
- (b) 1.9
- (c) 0.2
- (d) None of the above

16. If $P = \begin{bmatrix} .1 & .2 \\ .3 & 0 \end{bmatrix}$, $Q = \begin{bmatrix} .3 & .6 \\ 0 & .1 \end{bmatrix}$, then the value of P o Q is:

- (a) $\begin{bmatrix} .4 & .8 \\ .3 & .1 \end{bmatrix}$
- (b) $\begin{bmatrix} .1 & .2 \\ 0 & 0 \end{bmatrix}$
- (c) $\begin{bmatrix} .1 & .1 \\ .3 & .3 \end{bmatrix}$
- (d) None of the above
- 17. If the basic assignment m specified by :

$$m = (0, .3, .4, 0, 0, .1, .2)$$

then possibility distribution r is :

- (a) r = (.2, .3, .3, .3, .7, 1, 1)
- (b) r = (1, 1, .7, .3, .3, .3, .2)
- (c) r = (.3, .1, .4, 0, .1, .1, .2)
- (d) None of the above

[7]

E-765

- 18. Which one of the following is correct:
 - (a) Bel $(A \cap B) = \min [Bel (A), Bel (B)]$
 - (b) $Pl(A \cup B) = max[Pl(A), Pl(B)]$
 - (c) Bel (A) + Bel $(\overline{A}) \le 1$
 - (d) All of the above
- 19. Every set $A \in P(X)$ is called a focal element of m if:
 - (a) m(A) > 0
 - (b) $m(A) \ge 0$
 - (c) $m(A) \leq 0$
 - (d) None of the above
- 20. The Dempster's rule of combination is expressed by the formula:

(a)
$$M_{1,2}(A) = \sum_{B \cup C = A} \frac{M_1(B), M_2(C)}{1 - K}$$

$$(b) \quad \ M_{1,2}(A) = \sum_{B \, \cap \, C = \, A} \frac{M_1(B), M_2(C)}{K}$$

(c)
$$M_{1,2}(A) = \sum_{B \cap C = A} \frac{M_1(B), M_2(C)}{1 - K}$$

(d) None of the above

2 each

(Very Short Answer Type Questions)

Note: Attempt all questions.

 Compute the scalar cardinality and relative cardinality of the fuzzy set:

$$A = \frac{.4}{v} + \frac{.2}{w} + \frac{.5}{x} + \frac{.4}{v} + \frac{1}{z}$$

[8] E-765

- 2. Define convex fuzzy set.
- 3. Let $f: X \to Y$ be an arbitrary crisp function, for any $Ai \in \mathbf{J}(X)$ and $Bi \in \mathbf{J}(Y)$, $i \in I$. Then show that if $A_1 \subseteq A_2$, then $f(A_1) \subseteq f(A_2)$.
- 4. Define MIN and MAX for any two fuzzy numbers A and B.
- 5. Define *i* transitive closure.
- 6. Prove that:

$$(P \stackrel{i}{o} Q)^{-1} = Q^{-1} \stackrel{i}{o} P^{-1}$$

- 7. If $S(P, R) \neq Q$ then $\overset{\vee}{Q} = P^{-1} \overset{i}{o} R$ is the smallest member of S(P, R) where $\overset{wi}{P} \overset{wi}{o} Q = R$.
- 8. Prove that:

$$P1(A) + P1(\overline{A}) \ge 1$$

Section—C 3 each

(Short Answer Type Questions)

Note: Attempt all questions.

- 1. Prove that for every $A \in \mathbf{J}(X)$, $A = \bigcup_{\alpha \in [0,11]} {}_{\alpha}A$ where ${}_{\alpha}A = \alpha.{}^{\alpha}A$ and U denotes the standard fuzzy union.
- 2. Show that $u_w(a, c_w(a)) = 1$ for $a \in [0,1]$ all w > 0 where u_w and c_w denote the Yager union and complement respectively.
- 3. Prove that:

$$A(x) = \begin{cases} \sin x & 0 \le x \le \pi \\ 0 & \text{otherwise} \end{cases}$$

is a fuzzy number.

- 4. Define max min composition on binary fuzzy relation.
- 5. The fuzzy relation R (X, X) represented by the membership matrix:

	а	b	c	d	e	f	g
a	0	.8	0	.4	0	0	0
b	.8	1	0	.4	0	0	0
c	0	0	1	0	1	.9	.5
d	.4	.4	0	1	0	0	0
e	0	0	1	0	1	.9	.5
f	0	.8 1 0 .4 0 0	.9	0	.9	1	.5
g	0	0	.5	0	.5	.5	1
	⊢						→

Draw and explain partition tree for the similarity relation.

- 6. Prove that $i(a,b) \le d$ iff $wi(a,b) \ge b$.
- 7. Show that every possibility measure PoS on a finite power set P (X) is uniquely determined by a possibility distribution function $r: X \to [0,1]$ via the formula PoS (A) $\max_{x \in A} r(x)$ for each $A \in P(X)$.
- 8. Let $X = \{a, b, c, d\}$. Given belief measure : Bel $(\{b\}) = .1$ Bel $(\{a, b\}) = 0.2$ Bel $(\{b, c\}) = .3$

Bel
$$({b, d}) = 1$$
.

Determine the corresponding basic assignment.

[10] E-765

Section—D

5 each

(Long Answer Type Questions)

Note: Attempt all questions.

1. Let A be a fuzzy set defined by:

$$A = \frac{.5}{x_1} + \frac{.4}{x_2} + \frac{.7}{x_3} + \frac{.8}{x_4} + \frac{1}{x_5}$$

Determine all α -cuts and strong α -cuts of A.

Let C be a function from [0, 1] to [0, 1]. Then C is a fuzzy complement if and only if there exists a continuous function f from [0, 1] to R such that f(1) = 0, f is strictly decreasing and $c(a) = f^{-1}[f(0) - f(a)]$ for all $a \in [0, 1]$.

2. If:

$$A(x) = \begin{cases} 0 & \text{for } x < -2, x > 4 \\ \frac{x+2}{3} & -2 \le x \le 1 \\ \frac{4-x}{3} & 1 \le x \le 4 \end{cases}$$
$$B(x) = \begin{cases} 0 & x < 1, x > 3 \\ x-1 & 1 \le x \le 2 \\ 3-x & 2 \le x \le 3 \end{cases}$$

find MIN (A, B)(x) and MAX (A, B)(x).

Let binary relation R(X, X) can be expressed by :

$$R(x,x) = \frac{.7}{(1,1)} + \frac{.3}{(1,3)} + \frac{.7}{(2,2)} + \frac{1}{(2,3)} + \frac{.9}{(3,1)} + \frac{1}{(3,4)} + \frac{.8}{(4,3)} + \frac{.5}{(4,4)}$$

Determine membership matrix, sagittal diagram and simple diagram.

3. Given:

$$Q = \begin{bmatrix} .1 & .4 & .5 & .1 \\ .9 & .7 & .2 & 0 \\ .8 & 1 & .5 & 0 \\ .1 & .3 & .6 & 0 \end{bmatrix}$$

and

$$r = .8 .7 .5 0$$

Determine all solution of P o Q = R.

Or

Define fuzzy ordering relation.

4. Explain the concepts of fuzzy measures with examples.

Or

Explain fuzzy sets and possibility theory.