Roll No.

E - 770

M. A./M. Sc. (Third Semester) EXAMINATION, Dec.-Jan., 2020-21

MATHEMATICS

(Optional—B)

Paper Fifth

(Graph Theory—I)

Time: Three Hours [Maximum Marks: 80

Note: Attempt all Sections as directed.

Section—A

1 each

(Objective/Multiple Choice Questions)

Note: Attempt all questions.

Choose the correct answer:

- 1. The maximum number of edges in a simple graph with *n* vertices is :
 - (a) $\frac{n(n-1)}{2}$
 - (b) $\frac{n-1}{2}$
 - (c) $\frac{n}{2}$
 - (d) $\frac{n+1}{2}$

2.	A graph in which are vertices of equal degree is called:		
	(a)	Complete graph	
	(b)	Regular graph	
	(c)	Null graph	
	(d)	None of the above	
3.	Every null graph is regular of degree :		
	(a)	2	
	(b)	1	
	(c)	0	
	(d)	None of the above	
4.	How many vertices and edges does the graph C_n have ?		
	(a)	n vertices and $n + 1$ edges	
	(b)	2^n vertices and n edges	
	(c)	(n + 1) vertices and n edges	
	(d)	n vertices and n edges	
5.	Isolated vertices are those with:		
	(a)	Zero degree	
	(b)	Degree one	
	(c)	Degree two	
	(d)	None of the above	
6.	Pendent vertex of degree :		
	(a)	Zero	
	(b)	One	
	(c)	Two	
	(d)	None of the above	

- 7. A vertex with zero out degree is called:
 - (a) Total degree
 - (b) Source
 - (c) Sink
 - (d) None of the above
- 8. A graph with chromatic number less than or equal to *k* is called:
 - (a) *k* chromatic colourable
 - (b) *k* colourable chromatic
 - (c) k chormatic
 - (d) k colourable
- 9. What will be the chromatic number of the following graph?

- (a) 3
- (b) 4
- (c) 5
- (d) 6
- 10. How many edges will a tree consisting of N modes have?
 - (a) N + 1
 - (b) N-1
 - (c) N
 - (d) log(N)

- 11. How many unique colours will be required for proper vector colouring of an empty graph having *n* vertices ?
 - (a) *n*
 - (b) 2
 - (c) 1
 - (d) 0
- 12. Minimum number of colours required for proper edges colouring of a graph is called :
 - (a) Vertex matching
 - (b) Chromatic index
 - (c) Colour number
 - (d) Chromatic number
- 13. Every graph of odd order is of class:
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
- 14. For any graph G:
 - (a) $\alpha_0 + \beta_1 = \beta_0 + \alpha_1$
 - (b) $\alpha_0 + \beta_0 = \alpha_1 + \beta_1$
 - (c) $\alpha_0 + \alpha_1 = \beta_0 + \alpha_1$
 - (d) $\alpha_0 \oplus \beta_0 = \alpha_0 \oplus \beta_1$
- 15. What is the definition of graph according to graph theory?
 - (a) Collection of vertices
 - (b) Collection of edges
 - (c) Collection of dots and lines
 - (d) None of the above

16.	Whic	ch one of the following is chromatic number of bipartite	
	graph	n ?	
	(a)	5	
	(b)	4	
	(c)	3	
	(d)	1	
17.	Which of the following has maximum clique size ?		
	(a)	Perfect graph	
	(b)	Tree	
	(c)	Histogram	
	(d)	Cartesian	
18.	The number elements in the adjacency matrix of a graph having 7 vertices is :		
	(a)	56	
	(b)	49	
	(c)	36	
	(d)	14	
19.	In the given connected graph G, what is the value of rad (6) can diam (6) ?		
	(a)	2, 2	
	(b)	3, 3	
	(c)	2, 3	
	(d)	3, 2	

[6] E-770

- 20. Method of intersection is also known as:
 - (a) Recection
 - (b) Rediation
 - (c) Traversing
 - (d) Graphical triangulation

Section—B

2 each

(Very Short Answer Type Questions)

Note: Attempt all questions.

- 1. Define topological operations.
- 2. Define vector space.
- 3. Explain spectrum properties.
- 4. Define cyclic graph.
- 5. Explain uniquely colourable.
- 6. Define achromatic and the adjoint number.
- 7. Explain clique parameters.
- 8. Explain circular arc graph.

Section—C

3 each

(Short Answer Type Questions)

Note: Attempt all questions.

- 1. Define homomorphism and counteractions with an example.
- 2. Define adjacency matrix and vector space.
- 3. For any graph G, prove that :

$$\alpha_0 + \beta_0 = n$$

[7] E-770

- 4. If G is a k-critical graph, then $\delta(G) \ge k 1$.
- 5. Prove that every graph is an intersection graph.
- 6. Prove that the complement of every interval graph is a comparability graph.
- 7. Prove that any square submatrix of the adjacency matrix F of a graph G has determinant +1, -1 or zero.
- 8. Prove that the bond space β of G is the subspace R (δ) (the range of δ) of E. Then the stars span β and dimension $\beta = n k = V$.

Section—D

5 each

(Long Answer Type Questions)

Note: Attempt all questions.

1. Prove that if a graph is homeomorphic from graph G, then G is contraction of H.

Or

Prove that for any $S \ge 2$, $R(S,S) \ge 2^{S/2}$.

2. Prove that any graph G of order $n \ge 2$ without isolated vertices $\theta_1 \le L \frac{n^2}{4}$ and the covering need use only edges and triangle.

Or

For every positive integer k, there is a k-chromatic triangle-tree graph.

[8] E-770

3. Prove that the complement of every interval graph is a comparability graph.

Or

Prove that a graph G is a permutation graph iff G and \overline{G} are comparability graphs.

4. Prove that every comparability graph is perfect.

Or

For any two positive integers $S_1, S_2 \ge 2$.