Roll No.	
----------	--

E - 358

M. Sc. (IT) (First Semester) (ATKT) EXAMINATION, Dec.-Jan., 2020-21

Paper Second

MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Time: Three Hours [Maximum Marks: 100

[Minimum Pass Marks: 40

Note: Attempt all Sections as directed.

Section—A

1 each

(Objective/Multiple Choice Questions)

Note: Attempt all questions.

Choose the correct answer:

- 1. Let A and B be sets and A^c and B^c denote the complements of the sets A and B. The set $(A-B)\cup (B-A)\cup (A\cap B)$ is equal to :
 - (a) $A \cap B$
 - (b) $A^c \cap B^c$
 - (c) $A^c \cup B^c$
 - (d) $A \cup B$

- 2. The 'Subset' relation on a set of sets is:
 - (a) A partial ordering
 - (b) An equivalence relation
 - (c) Transitive and symmetric only
 - (d) Transitive and anti-symmetric only
- 3. $p \rightarrow q \land r \rightarrow q$ is equivalent to :
 - (a) $p \lor r \to p$
 - (b) $p \lor r \rightarrow q$
 - (c) $p \lor r \rightarrow q$
 - (d) $p \rightarrow q \rightarrow r$
- 4. Involution law is:
 - (a) $p \vee q^c \equiv p^c \wedge q^c$
 - (b) $\cdot \sim p \equiv p$
 - (c) $.p \lor p \equiv p$
 - (d) $p \lor q \equiv q \lor p$
- 5. A self-complemented, distributive lattice is called:
 - (a) Boolean Algebra
 - (b) Modular lattice
 - (c) complete lattice
 - (d) Self dual lattice
- 6. Every finite subset of a lattice has:
 - (a) may LUB's and a GLB
 - (b) A LUB and GLB
 - (c) Many LUB's and many GLB's
 - (d) Either some LUB's or some GLB's

- 7. NAND is a complement of:
 - (a) AND
 - (b) OR
 - (c) XAND
 - (d) NOT
- 8. The absorption law is defined as:
 - (a) .a * a = a
 - (b) a * 0 = 0
 - (c) a * a + b = a
 - (d) a + a * b = b
- 9. A subgroup H,* of (G, *) is called a normal subgroup of for any $a \in H$, then
 - (a) $aH \neq Ha$
 - (b) $Ha = Ha^{-1}$
 - (c) Ha = aH
 - (d) None of the above
- 10. The order of a subgroup of a finite group divides the order of the group. This theorem called:
 - (a) Euler's theorem
 - (b) Fermat's theorem
 - (c) Cayley's representation theorem
 - (d) Lagrange's theorem

- 11. Which of the following polynomials of degree 3 is a monic polynomials?
 - (a) $3x^2 + 5x 4 = 0$
 - (b) $2x^3 + 2x^2 + 2x + 4 = 0$
 - (c) $3x^3 + x^2 + 7 = 0$
 - (d) $4x^3 + 2x 3 = 0$
- 12. Which of the following is true?
 - (a) The set of all rational negative numbers forms a group under multiplication.
 - (b) The set of all non-singular matrices forms a group under multiplication.
 - (c) The set of all matrices forms a group under multiplication
 - (d) Both (b) and (c) are true
- 13. The minimum number of edges in a connected graph with n vertices.
 - (a) *n*
 - (b) n+1
 - (c) n-1
 - (d) None of the above
- 14. The total number of edges in a complex graph of n vertices is:
 - (a) $\frac{n}{2}$
 - (b) $n^2 1$
 - (c) $\frac{n^2-1}{2}$
 - (d) $\frac{n \ n-1}{2}$

[5] E-358

15.		ny undirected graph, the sum of degrees of all the	
	vertices:		
	(a)	must be odd	
	(b)	must be even	
	(c)	is twice the number of edges	
	(d)	Both (b) and (c)	
16.	A dir	A directed graph $G = (V, E)$ is said to be finite it its:	
	(a)	Set V of vertices and set E of edges are finite	
	(b)	Set V of vertices is finite	
	(c)	Set E of edges is finite	
	(d)	None of the above	
17.	A binary tree T has n leaf node. The number of nodes of		
	degre	egree 2 in T is	
	(a)	$\log_2 n \log$	
	(b)	2^n	
	(c)	n-1	
	(d)	n	
18.	Whic	ch of the following traversal techniques lists the nodes of	
	binary search tree in ascending order?		
	(a)	preorder	
	(b)	Inorder	
	(c)	postorder	
	(d)	All of the above	

[6] E-358

- 19. The number of possible binary trees with 3 nodes is :
 - (a) 5
 - (b) 10
 - (c) 12
 - (d) 15
- 20. Preorder traversal is nothing but:
 - (a) Depth of first order
 - (b) Breadth first order
 - (c) Topological order
 - (d) Linear order

Section—B

2 each

(Very Short Answer Type Questions)

Note: Attempt all questions in 2-3 lines.

- 1. Let the functions f and g be defined by f x = 2x + 1 and g x $x^2 2$. Find the formula defining the composition function $g \circ f$.
- 2. Find the truth tables for:
 - (a) $p \vee \neg q$
 - (b) $\neg p \land \neg q$
- 3. Define Sub lattices.
- 4. Define Boolean Algebra.
- 5. Define normal subgroup.
- 6. Define Minimal polynomials.
- 7. Define Psuedograph.
- 8. Define complete graph with example.
- 9. Draw all trees with exactly six vertices.
- 10. Define spanning tree.

[7] E-358

Section—C

3 each

(Short Answer Type Questions)

Note: Attempt all questions within 75 words.

- 1. Verify that the proposition $p \wedge q \wedge \neg p \vee q$ is a contradiction.
- 2. Write difference between function and relation.
- 3. Define distributive lattice with example.
- 4. Draw the logic circuit with input a, b, c and output f where f = abc + a'c' + b'c'.
- 5. Define abelian group with example.
- 6. Define polynomial ring.
- 7. Define Hamiltonian circuit and Hamiltonian graph with example.
- 8. Explain the path and connectivity in directed graph.
- 9. Write the applications of trees in computer sciences.
- 10. Explain complete and extended binary trees.

Section—D

6 each

(Long Answer Type Questions)

Note: Attempt all questions within 150 words.

1. Show that the relation " $xRy \Leftrightarrow x - y$ is divisible by 3" when $x, y \in I$ defined in the set of integers I is an equivalence relation.

Or

Is the following argument valid?

If two sides of a triangle are equal, then the opposite angles are equal,

Two sides of a triangle are not equal,

... The opposite angles are not equal.

2. Prove that for any a and b in a Boolean algebra $(B, \vee, \wedge',)$,

(a)
$$a \vee b' = a' \wedge b'$$
 and

(b)
$$a \wedge b' = a' \vee b'$$

Show that dual of a lattice is a lattice.

3. Prove that a subset $s \neq | \phi$ of G is a subgroup of (G, *) iff for any pair of elements $a, b \in S$; $a * b^{-1} \in S$.

Prove that in a ring (R, +, .)

(i)
$$a.0 = 0.a = 0 \,\forall \, a \in \mathbb{R}$$

(ii)
$$a. -b = -a.b = -a.b \quad \forall a, b \in \mathbb{R}$$

4. Explain Dijkstra algorithm with example.

Write applications of Graph theory in computer science.

5. Explain traversing binary trees.

Prove that every connected graph has at least one spanning tree.