Roll No.	•••••

E-301

M. Sc. (First Semester) EXAMINATION, Dec.-Jan., 2020-21

PHYSICS

Paper First

(Mathematical Physics)

Time: Three Hours [Maximum Marks: 80

Note: Attempt all Sections as directed.

Section—A

1 each

(Objective/Multiple Choice Questions)

Note: Attempt all questions.

Choose the correct answer:

- 1. In vector spaces V (F):
 - (a) An ordered double is a V (F)
 - (b) An ordered triple is a V (F)
 - (c) An ordered one is a V (F)
 - (d) None of the above
- 2. In transpose of matrix $(A^T)^T$ is equal to :
 - (a) A^T
 - (b) A
 - (c) A*
 - (d) None of the above

- 3. Abelian group have properties:
 - (a) 10
 - (b) 5
 - (c) 2
 - (d) 3
- 4. The value of (A + B)* is equal to :
 - (a) $A^* + B^*$
 - (b) A*.B*
 - (c) A*B
 - (d) None of the above
- 5. The eigen vectors of a Hermitian matrix are:
 - (a) Real
 - (b) Imaginary
 - (c) Complex
 - (d) None of the above
- 6. Given two functions $u = x^2 y^2$ and $v = \frac{y}{x^2 + y^2}$. Which of the following is true?
 - (a) Both functions u and v are harmonic
 - (b) The function u is harmonic and v is not harmonic
 - (c) The function v is harmonic and u is not harmonic.
 - (d) Both functions u and v are not harmonic.
- 7. Which of the following equations is linear differential equation?

(a)
$$\frac{dy}{dx} + y \cos x = \sin x$$

(b)
$$\frac{d^4 y}{dx^4} = [k + (y')^2]^{3/2}$$

(c)
$$\frac{d^4 y}{dx^4} = \cos\left(\frac{dy}{dx}\right)$$

- (d) None of the above
- 8. Logarithm of a complex number $z = (r, \theta)$ is a :
 - (a) Multivalued function
 - (b) Multivalued and single function
 - (c) Data insufficient
 - (d) Data sufficient
- 9. The general solution of a linear differential equation with constant coefficient is equal to:
 - (a) CF + PI
 - (b) CF PI
 - (c) $CF \times PI$
 - (d) None of the above
- 10. The analytic function f(z) whose real part is $x^2 y^2$ is:
 - (a) z
 - (b) z^2
 - (c) z^{-2}
 - (d) None of the above
- 11. The value of magnitude of the integral $\int_{C} \frac{dz}{z}$ where C is

$$|z| = r$$
 is:

- (a) $2\pi r$
- (b) 2π
- (c) π
- (d) None of the above

12. In a Fourier series for a periodic continuous function b_n is:

(a)
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

(b)
$$b_n = \frac{1}{2^{\pi}} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

(c)
$$b_n = \pi \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

(d)
$$b_n = 2\pi \int_{-\pi}^{\pi} f(x) \sin x \, dx$$

13. In Laplace transform value of e^{ax} is:

(a)
$$\frac{1}{s-a}$$

(b)
$$\frac{1}{s}$$

(c)
$$\frac{1}{s+a}$$

(d)
$$\frac{1}{2s}$$

14. In Laplace transform value of sin at is equal to :

(a)
$$\frac{a}{s^2 + a^2}$$

(b)
$$\frac{a}{s^2}$$

(c)
$$\frac{s^2}{a^2}$$

(d)
$$\frac{a^2 + s^2}{a}$$

15. According to Fourier expansion of x^2 , the value of $\sum_{n=2}^{\infty} \frac{1}{n^2}$ is

:

- (a) $\frac{\pi^2}{3}$
- (b) $\frac{\pi^2}{4}$
- (c) $\frac{\pi^2}{6}$
- (d) $\frac{\pi^2}{12}$
- 16. Laplace transform of $\frac{1}{s(s^2+1)}$ is:
 - (a) $(1 \cos t)$
 - (b) $(1 + \cos t)$
 - (c) $(1 \sin t)$
 - (d) $(1 + \sin t)$
- 17. The eigen values of an antisymmetric matrix are:
 - (a) ± 1
 - (b) $\pm i$
 - (c) Zero or imaginary
 - (d) None of the above
- 18. Which of the following represent Fourier transform?
 - (a) $g(\alpha) = \int_0^\infty f(t) e^{-\alpha t} dt$

[6] E-301

(b)
$$g(\alpha) = \int_0^\infty f(t) e^{a^{-1}} dt$$

- (c) Both (a) and (b)
- (d) None of the above
- 19. The transform:

$$F(s) = \int_{0}^{\infty} F(t) e^{-ist} dt$$

is:

- (a) Fourier transform
- (b) Laplace transform
- (c) Inverse Laplace transform
- (d) None of the above
- 20. Classify the following differential equation:

$$w.\frac{dw}{dt} + 3t = 10$$

- (a) Separable and not linear
- (b) Both separable and not linear
- (c) Linear and not separable
- (d) Neither separable nor linear

Section—B

2 each

(Very Short Answer Type Questions)

Note: Attempt all questions.

- 1. Define linearly dependent and linearly independent vectors.
- 2. Define vector subspaces.
- 3. What do you mean by Eigen value and Eigen vectors?
- 4. What do you mean by order and degree of differential equation? Define with *two* examples.

[7] E-301

- 5. Explain the term singular point of an analytic function with example.
- 6. Explain Laguerre function.
- 7. What is Fourier series?
- 8. Explain convolution theorem.

Section—C

3 each

(Short Answer Type Questions)

Note: Attempt all questions.

- 1. Explain inner product of vectors space.
- 2. Explain unitary matrix with example.
- 3. Define a linear differential equation.
- 4. What do you mean by diagonalization of a matrix?
- 5. Define residue of a pole.
- 6. Find the residue of:

$$f(z) = \frac{e^z}{z^2 + a^2}$$

- 7. State Cauchy-Riemann condition for analytic of complex variable in polar coordinate.
- 8. Prove that:

$$P_n \quad x \quad = \quad -1 \quad P_n \quad -x$$

Section—D

5 each

(Long Answer Type Questions)

Note: Attempt all questions.

1. Find the eigen values and eigen vectors of :

$$\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$$

Or

Find the eigen values and eigen vectors of:

$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

2. Apply the residue to show that :

$$\int_{0}^{2\pi} \frac{d^{\theta}}{a + b \cos \theta} = \frac{2^{\pi}}{\sqrt{a^{2} - b^{2}}}$$

Or

Apply the method of contour integration:

$$\int_0^{2\pi} \frac{1}{5 - 4\sin\theta} d\theta$$

3. Find the solution of the following differential equation:

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = x^2$$

when
$$y(0) = 0$$
 and $y'(0) = \frac{1}{2}$.

4. Find the Fourier integral of the functions:

$$f(x) = 0$$
 when $x < 0$

$$f(x) = 1$$
 when $x = 0$

$$f(x) = e^{-x} \quad \text{when } x > 0$$

Or

Find Laplace transform of:

$$F(t) = \int_0^t \frac{\sin u}{u} du$$