Roll No.	•••••
----------	-------

E - 302

M. Sc. (First Semester) EXAMINATION, Dec.-Jan., 2020-21

PHYSICS

Paper Second

(Classical Mechanics)

Time Three Hours] [Maximum Marks : 80

Note: Attempt all Sections as directed.

Section—A

1 each

(Objective/Multiple Choice Questions)

Note: Attempt all questions.

Choose the correct answer:

- 1. The homogeneity of time leads to the law of conservation of :
 - (a) Linear momentum
 - (b) Angular momentum
 - (c) Energy
 - (d) Parity
- 2. The Lagrange's equation of motion for L-C circuit:

(a)
$$L\frac{d^2q}{dt^2} + \frac{q}{C} = 0$$

(b)
$$L \frac{d^2q}{dt^2} + \frac{1}{C} = 0$$

(c)
$$\frac{d^2q}{dt^2} + \frac{1}{C} = 0$$

(d)
$$\frac{d^2q}{dt^2} + \frac{1}{L} = 0$$

- 3. The Lagrangian of a particle moving in a plane under the influence of a central potential is given by $L = \frac{1}{2}M(\dot{r}^2 + r^2\dot{\theta}^2) V(r). \quad \text{The generalited momenta}$ corresponding to 'r' and ' θ ':
 - (a) $M\dot{r}$ and $Mr\dot{\theta}$
 - (b) $M\dot{r}$ and $Mr^2\dot{\theta}$
 - (c) $M\dot{r}^2$ and $Mr^2\dot{\theta}$
 - (d) $M\dot{r}^2$ and $Mr^2\dot{\theta}^2$
- 4. Rutherford's differential scattering cross-section:
 - (a) is inversely proportional to $\cos ec\mu^4\left(\frac{\phi}{2}\right)$, where ' ϕ ' is the scattering angle.
 - (b) is proportional to the square of the kinetic energy of the incident particle.
 - (c) has the dimensions of the solid angle.
 - (d) has the dimensions of area.

- 5. Hamilton's principle function 'S' and Hamilton's characteristic function 'W' for conservative system are related as:
 - (a) S = W
 - (b) S = W Et
 - (c) S = W + Et
 - (d) S is not related to W
- 6. For a one-dimensional harmonic oscillator, the representative print in two dimensional phase space traces :
 - (a) an ellipse
 - (b) a parabola
 - (c) a hyperbola
 - (d) always a straight line
- 7. Whatever dimension a generalized co-ordinate has the product of the generalized force and generalized displacement must have the dimension of:
 - (a) Work
 - (b) Force
 - (c) Torque
 - (d) None of the above
- 8. When constraints are introduced into a system, its number of degrees of freedom is:
 - (a) increased
 - (b) decreased
 - (c) remains same
 - (d) None of the above

- 9. The path followed by a particle is sliding from one point to another in the absence of friction in the shortest time is a:
 - (a) Cycloid
 - (b) Sphere
 - (c) Catenary
 - (d) Sigmoid
- 10. Write an expression for the Hamilton's principle function:
 - (a) $S = \int L dt + constant$
 - (b) $S = \int L^2 dt$
 - (c) $S = \int L dt + \dot{q}^2$
 - (d) $S = \int L dt$
- 11. Poisson brackets have the relations:
 - (a) [u, v] = [v, u]
 - (b) [u, v] = -[v, u]
 - (c) [u, u] = [v, v]
 - (d) [u, v] = 0
- 12. If a co-ordinate is cyclic, Hamiltonian would reduce the number of variables in new formulation by :
 - (a) Four
 - (b) One
 - (c) Two
 - (d) Three

- 13. The areal velocity of the particle in a central force field is:
 - (a) Zero
 - (b) Maximum
 - (c) Minimum
 - (d) Constant
- 14. If the total energy of a particle in a conservative force field is zero, then the velocity obtained in such case is:
 - (a) zero
 - (b) escape velocity
 - (c) recoil velocity
 - (d) None of the above
- 15. Kepler's second law says that:
 - (a) areal velocity is zero.
 - (b) areal velocity is constant.
 - (c) areal velocity is positive.
 - (d) areal velocity is negative.
- 16. The angle of recoil of the target particle relative to the incident direction of the scattered particle is:
 - (a) $\frac{1}{2}\pi + \theta$
 - (b) $\pi \theta$
 - (c) $\frac{1}{2} \pi \theta$
 - (d) $\pi + \theta$

- 17. A particle describes a circular orbit under the influence of an attractive central force directed towards a point on the circle. The force inversely proportional to:
 - (a) r^5
 - (b) r^2
 - (c) r^3
 - (d) r^4
- 18. Hamilton's equations of motions are:

(a)
$$\frac{\partial H}{\partial p} = \dot{q} ; \frac{\partial H}{\partial q} = \dot{p}$$

(b)
$$\frac{\partial H}{\partial p} = -q$$
; $\frac{\partial H}{\partial q} = p$

(c)
$$\frac{\partial H}{\partial p} = q$$
; $\frac{\partial H}{\partial q} = -p$

- (d) None of the above
- 19. Energy of a particle of mass M is E and its momentum is P. Then the relation between E and P is :

(a)
$$E = \frac{P}{2M}$$

(b)
$$E = \sqrt{2PM}$$

(c)
$$P = \sqrt{2ME}$$

(d)
$$P = \frac{2M}{E}$$

[7] E-302

- 20. In case of elliptical orbits, energy is proportional to :
 - (a) a^{-3}
 - (b) a^{-1}
 - (c) *a*
 - (d) a^3

Section—B

2 each

(Very Short Answer Type Questions)

Note: Attempt all questions.

- 1. Define constraints.
- 2. What is a rigid body?
- 3. What do you understand by cyclic co-ordinate?
- 4. Identify 6 independent generalized co-ordinates necessary for complete specification of a rigid body containing 'N' particles.
- 5. What is a δ -variation? How is it differ from Δ -variation?
- 6. Describe a Poisson brackets.
- 7. Define a Gyroscopic force.
- 8. Explain the canonical transformation in brief.

Section—C

3 each

(Short Answer Type Questions)

Note: Attempt all questions.

- Discuss a Hamilton's principle (action or action integral) and derive a Lagrange's equations of motion for Hamilton's principle.
- 2. What do you mean by virtual work? State and prove D'Alembert's principle.
- 3. Describe the inverse square law force and discuss Kepler's laws with its help.

[8] E-302

- 4. Discuss the two body central force problem reduced to equivalent one body problem and obtained Lagrangian function.
- 5. Define inertia tensor and give its physical significance.
- 6. What is a generating function? Prove type-I transformation.
- 7. Derive an Hamiltonian function H and conservation of energy Jacobi's Integral.
- 8. Describe the Euler's theorem.

Section—D

5 each

(Long Answer Type Questions)

Note: Attempt any *four* questions.

- 1. As an example of canonical transformation, discuss the problem of 1-D simple harmonic oscillator and obtain the equation of motion.
- 2. Discuss the principle of least action and obtain necessary equation.
- 3. What do you mean by action and angle variables ? Find the equation for harmonic oscillator.
- 4. Derive Hamilton function H and conservation of energy Jacobi's integral and physical significance.
- 5. Derive a Rutherford's scattering cross-section.
- 6. Discuss a solution of Harmonic oscillator and prove by H-J method.