Roll N	0.	
koll N	0.	•••••

E - 319

M. Sc. (First Semester) EXAMINATION, Dec.-Jan., 2020-21

BOTANY

Paper Second

(Genetics)

Time: Three Hours] [Maximum Marks: 80

[Minimum Pass Marks : 16

Note: Attempt all Sections as directed.

Section—A

1 each

(Objective/Multiple Choice Questions)

Note: Attempt all questions.

Choose the correct answer:

- 1. In which of the following, centromere is found on the proximal end?
 - (a) Telocentric
 - (b) Acrocentric
 - (c) Submetacentric
 - (d) Metacentric

2.	The 1	e major non-histone proteins in chromosomes are :		
	(a)	Basic		
	(b)	Acidic		
	(c)	Neutral		
	(d)	All of the above		
3.		ch of the following category of chromatin is inactive for cription?		
	(a)	Heterochromatin		
	(b)	Euchromatin		
	(c)	Both (a) and (b)		
	(d)	Chromatin		
4.	In Nu	acleosome, histone protein is found as:		
	(a)	Dimer		
	(b)	Tetramer		
	(c)	Hexamer		
	(d)	Octamer		
5.	G an	d R banding are most commonly used for :		
	(a)	Karyotyping		
	(b)	Deletions		
	(c)	Inversions or amplifications		
	(d)	All of the above		

		101			
6.		hich of the following, exogenous D. N. A. is taken up by			
		cell membrane of the recepient cell?			
	(a)	Conjugation			
	(b)	Transduction			
	(c)	Transformation			
	(d)	All of the above			
7.	Tran	Transduction requires :			
	(a)	Virus			
	(b)	Lysogenic cycle			
	(c)	Lytic cycle			
	(d)	All of the above			
8.	Vira	l D. N. A. maintains itself in the host as prophage in :			
	(a)	Temperate phages			
	(b)	Virulent phages			
	(c)	Both (a) and (b)			
	(d)	None of the above			
9.	The	The recombination frequency between two genes cannot be			
	grea	ter than :			
	(a)	25%			
	(b)	50%			
	(c)	75%			
	(d)	100%			

[4] E-319

		• •		
10.	The	relative distances between positions on a genetic map		
	are calculated by :			
	(a)	Number of Nucleotides		
	(b)	Number of Nucleotide pairs		
	(c)	Recombination frequencies		
	(d)	All of the above		
11.	In E.	coli, which of the following is a helicase-nuclease?		
	(a)	Rec B		
	(b)	Rec C		
	(c)	Rec D		
	(d)	All of the above		
12.	Male	e Drosophila is an example of :		
	(a)	Complete linkage		
	(b)	Incomplete linkage		
	(c)	Partial linkage		
	(d)	All of the above		
13.	Cros	sing over provides proof for:		
	(a)	The linear arrangement of genes		

(d) The clump arrangement of genes

The random arrangement of genes

The nonlinear arrangement of ganes

(b)

(c)

14. Which of the following is a molecular marker? (a) RFLP (b) RAPD (c) SSLP (d) All of the above 15. Which of the following proteins initiates recombinational repair? (a) Rec B (b) Rec C (c) Rec D (d) Rec B, C, D 16. Which of the following is a direct method of gene transfer in plants? Co-integrative vector method (a) (b) Binary vector method (c) Both (a) and (b) Electroporation (d) 17. Ti plasmid is used as a vector because it: (a) contains T DNA regions (b) doesn't contain a vir region doesn't contain a con region (c)

(d) All of the above

		[6]	E-319		
18.	Chromosome mainpulation is a technique to control:				
	(a)	Number of haploid set of chromosomes			
	(b)	Combination of haploid set of chromosomes			
	(c)	Both (a) and (b)			
	(d)	None of the above			
19.		ch of the following methods is used for detecting matin production?	g alien		
	(a)	GISH			
	(b)	FISH			
	(c)	RFLP marker assisted introgression			
	(d)	All of the above			
20.		ch of the following is used for locating the general pids?	nes in		
	(a)	Monosomics			
	(b)	Trisomics			
	(c)	Nullisomics			
	(d)	All of the above			
		Section—B	2 each		

(Very Short Answer Type Questions)

Note: Attempt all questions in 2-3 sentences.

- 1. What is Chromatin?
- 2. What is Aneuploidy?

[7] E-319

- 3. What is Genetic Recombination?
- 4. What do you understand by Gene Mapping?
- 5. What are homologous chromosomes?
- 6. What do you mean by complete linkage?
- 7. What do you understand by Alien chromatin?
- 8. Write the names of two examples of whole genome transfer?

Section—C

3 each

(Short Answer Type Questions)

Note: Attempt all questions in 75 words.

- 1. Explain Trisomics by giving suitable examples.
- 2. Write a note on various banding patterns.
- 3. Write, how lysogeny is different from lytic cycle.
- 4. What are endogenote, exogenote and merozygote?
- 5. Discuss the role of genetic marker.
- 6. Explain, what are Complete and Incomplete linkage?
- 7. What is the purpose of Alien chromatin detection?
- 8. Define the chromosome manipulation.

Section—D

5 each

(Long Answer Type Questions)

Note: Attempt all questions in 150 words.

1. Discuss the chromosomal aberration.

Or

Write an account on any *one* specialized type of chromosome.

[8] E-319

2. Discuss the phage mediated recombination in bacteria.

Or

Prepare a genetic map by taking a suitable example.

3. Discuss the mechanism of crossing over.

Or

Write a note on Rec A, B, C, D enzymes.

4. Explain the transfer of whole genome by taking a suitable example.

Or

Write an account on chromosome manipulation.