Roll N	0.	•••••
--------	----	-------

E - 307

M. Sc. (First Semester)

EXAMINATION, Dec.-Jan., 2020-21

CHEMISTRY

Paper Third

(Quantum Chemistry, Thermodynamics and Chemical Dynamics—I)

Time: Three Hours [Maximum Marks: 80

[Minimum Pass Marks : 16

Note: Attempt all Sections as directed.

Section-A

1 each

(Objective/Multiple Choice Questions)

Note: Attempt all questions.

Choose the correct answer:

- 1. For a box with infinitely hard walls, the potential is maximum at
 - (a) L
 - (b) 2L
 - (c) L/2
 - (d) 3L

		[Z]	.–307		
2.	If y	= e^{-2x} , then find the value of dy/dx is:			
	(a)	$2e^{2x}$			
	(b)	$-2e^{-2x}$			
	(c)	$\frac{e^{2x}}{2}$			
	(d)	e^{-4x}			
3.	Which of the following is not a characteristics of way function?				
	(a)	Continuous			
	(b)	Single valued			
	(c)	Differentiable			
	(d)	Physically Significance			
4.	Any	wave function can be written as a linear combin	ation		
	of				
	(a)	Eigen Vectors			
	(b)	Eigen Values			
	(c)	Eigen Functions			
	(d)	Operators			
5.	Whi	ch of the following can be a wave function?			
	(a)	tan x			
	(b)	$\sin x$			
	(c)	$\cot x$			

(d) $\sec x$

		[3] E-3	07		
6.	For a	an ideal gas, the fugacity by pressure ratio is			
	(a)	f/p = 1			
	(b)	f/p = 0			
	(c)	f/p varies			
	(d)	f/p > 1			
7.	7. The ratio of chemical potential to free energy of a substance at constant temperature and pressure is :				
	(a)	Zero			
	(b)	1			
	(c)	∞			
	(d)	None of these			
8.	8. The four properties of a system viz. P, V, T, S are r by equation.				
	(a)	Gibbs-Helmholtz			
	(b)	Gibbs-Duhem			
	(c)	Maxwell's			
	(d)	Vant-Hoff			
9.	ial molar free energy of an element A in solution is sar	ne			
	as its :				
	(a)	Fugacity			
		Activity			
		Activity coefficient			
	(d)	Chemical potential			
10.	In an its:	n ideal solution, the activity of a component is equal	to		
	(a)	Mole fraction			
	(b)	Partial pressure			

(c) Fugacity at the same temperature and pressure

(d) None of these

- 11. The ionic strength of 2M KCl solution is :
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
- 12. The activity coefficient of 'm' modal $Cuso_4$ solution can be expressed in terms of its mean activity coefficient (γ^{\pm}) as:
 - (a) $m^{2\gamma \pm 2}$
 - (b) $4m^{3\gamma \pm 3}$
 - (c) $16m^{2\gamma \pm 4}$
 - (d) $108m^{5}\gamma \pm ^{5}$
- 13. Consider the statements S1 and S2:
 - S1: Conductivity always increases with decreases in the concentration of electrolyte.
 - S2: Molar conductivity always increases with decreases in the concentration of electrolyte.
 - (a) Both S1 and S2 are correct
 - (b) S1 is correct and S2 is wrong
 - (c) Both S1 and S2 are wrong
 - (d) S1 is wrong and S2 is correct
- 14. The Debye-Huckel equation provides a means to estimate the activity coefficients of single ions in solution, but requires knowledge of:
 - (a) The ionic strengths of solution and the hydrated radius of the ion of interest

[5] E-307

- (b) Ions most influence the total ionic strength and charges on these ions
- (c) Ionic strength of the solution, size of the hydrated ion for which the activity coefficient is being calculated and its change
- (d) Sizes of the hydrated ionic species
- 15. The effect that tends to retard the mobilities of ions in solution is:
 - (a) Relaxation effect
 - (b) Asymmetry effect
 - (c) Electrophoretic effect
 - (d) All of the above
- 16. Consider the following statements, the correct statement is:
 - (A) increase in concentration of the reactant increases the rate of a zero order reaction
 - (B) A plot of ln(k) vs. t is a straight line
 - (C) A pot of in(k) vs. 1/t is a straight line with a positive slope
 - (D) Rate constant k is equal to collision frequency a if Ea = 0
- 17. The decomposition of phosphine (PH_3) on tungsten at low pressure is a first order reaction. it is because the :
 - (A) Rate is proportional to the surface coveragbe
 - (B) Rate is inversely proportional to the surface coverage
 - (C) Rate is independent of the surface coverage
 - (D) Rate is decomposition is slow

18. Which method is used, for determining the order of reaction?

- (a) Refractometric method
- (b) Half-life method
- (c) Dilatometric method
- (d) Optical activity method
- 19. The unit of slope in Arrhenius plot to calculate the energy of activation is:
 - (a) K⁻¹
 - (b) F
 - (c) K
 - (d) C
- 20. Activate complex if formed due to:
 - (a) Effective collision
 - (b) Pressure
 - (c) Ineffective collisions
 - (d) Temperature

Section—B

2 each

(Very Short Answer Type Questions)

Note: Attempt all questions.

- 1. Integrate $\int_{10}^{100} RT \frac{dV}{V}$.
- 2. What is eigen function and eigen values.
- 3. Write the Maxwell relation for the following fundamental equation:
 - (i) dA = -SdT PdV
 - (ii) dH = TdS VdP

[7] E-307

- 4. Define activity. How is it related to pressure and fugacity?
- 5. Write the Lippmann's equation.
- 6. Define Relaxation effect.
- 7. What is Steric factor?
- 8. Define oscillatory reaction with example.

Section—C

3 each

(Short Answer Type Questions)

Note: Attempt all questions.

- 1. What are operators? Derive Schrödinger wave equation in terms of Hamiltonian operator.
- 2. What is the $^{\Delta E}$ between the n=4 and n=5 states for an F_2 molecule trapped within in a one dimension well of length 2.0 ? (Given: $h = 6.626 \times 10^{-34} \, \text{J-s}$, $m = 6.309 \times 10^{-26} \, \text{kg}$.
- 3. Derive the Gibbs-Duhem equation.
- 4. Determine the partial molar heat content of a system.
- 5. What is thickness of ionic atmosphere? Write the equation for it and explain how it varies with concentration of ion, valency of ion and temperature of solution.
- 6. Briefly discuss various aspects of ion-solvent interaction.
- 7. Write a note on salt effect.
- 8. Derive the rate equation for hydrogen-bromine reaction.

Section—D

5 each

(Long Answer Type Questions)

Note: Attempt all questions.

1. Describe briefly the various postulates of quantum mechanics.

Or

Discuss the application of Schrödinger wave equation for the hydrogen atom.

[8] E-307

2. Define the term Fugacity. Discuss any *two* methods for the determination of fugacity.

Or

Explain the term chemical potential. How does chemical potential vary with temperature and pressure? Derive the value of chemical of a mixture of ideal gases.

- 3. Write a note ionic strength. Give the explanation of the following statements:
 - (i) How the mean acitivity coefficient of an electrolyte determined?
 - (ii) How does it affect?
 - (iii) Calculate the ionic strength of 1.00 m-mol. kg^{-1} C a C 1, at 25 °C.

Or

Briefly discuss Debye-Huckel's theory of activity coefficient of electrolytic solutions. Derive the Debye-Huckel-Onsager equation.

4. Discuss the different methods for the determination of rate law. Derive the rate equation and obtain the value of A, B and C for the consecutive reaction:

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

$$Or$$

Bring out clearly the main features of collision theory of reaction rates. What do you mean by effective collision? Derive the rate equation for unimolecular reaction.