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B. A. (Part I11) EXAMINATION, 2021

MATHEMATICS

Paper Second

(Abstract Algebra)
Time : Three Hours ] [ Maximum Marks : 50
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Attempt any two parts of each question. All questions
carry equal marks.
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Define the normalizer of an element of a group and

prove that normalizer of a € G is a subgroup of group G.
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Define automorphism. If order of a group is 56, then

show that this group has 1 or 8 Sylow subgroup.
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State and prove the Cauchy theorem for finite abelian
group.

TPE—2

(UNIT—2)

T aora @1 aRw Bifv | Rig BIRC o qorieet &1
97d U & Ureldel] gerd il @ |

Define a quotient ring. Prove that ring of integers is
principal ideal ring.

Ifders qerd B URH QR 9 Rig B 6 uie
&3, U6 Jfders o BT 2 |

Define Euclidean ring and prove that every field is a

Euclidean ring.
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Define module of a ring. With the help of Einstein’s
formula, check the reducibility of the following

polynomial :

e x4l
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Define direct sum of two vector subspaces and state
and prove the necessary and sufficient condition for
direct sum of two subspaces.

e wHfte o aRAd ST | ey fo
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Define vector space. Show that :
WL+ W, =[W W, ]
where W, and W, are two subspaces of V (F).
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Show that every linearly independent subset of a finite
dimensional vector space is a basis of vector space or it

can be extended to construct the basis of vector space.
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I = x12 + 2x22 — 4% Xy +7x32 +8X X3
@1 AT o H | I SR S9! Wi, qEdie
AR ffesr o i |
By the method of Lagrange’s reduction change the
bilinear form :

I = x12 + 2x22 —4X% Xy +7x32 + 8% X3

into canonical form and find its rank, index and

signature.
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State and prove Sylvester’s rank-nullity theorem for
linear transformation.
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Transform the bilinear form XXz + X3X; + X Xo as sum

of squares.
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Let V(C) be the vector space of all continuous complex
valued functions on the unit interval 0<t<1 with
inner product defined by :

(F.90) =] t@) g0

then prove that V (C) is an inner product space.
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State and prove Bessel’s inequality for finite

dimensional vector spaces.
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Bl = (11 011)
B =(12-2)

B3 =(2,-11)
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Find orthonormal basis of basis ={B;,B,,Bs} using

Graham-Schmidt orthogonalization process, where :
B =(101)
P2 =12,-2)

B3 =(2-11).



