E-519

M.A./M.Sc. (Second Semester)(Main/ATKT) EXAMINATION, June 2021 MATHEMATICS

Paper First

(Advanced A	bstract Algebra-II)
Time: Three Hours]	[Maximum Marks 80
Note: Attempt all sections as directed	•
Sec	tion-A 1 each
(Obejctive/Mult	iple Choice Questions)
Note: Attempt all questions.	
Choose one correct answer out of four	alternative answers (a) through (d).
1. If A and B are R —submodules of	f R -module M and N , respectively, then
(a) $\frac{M \times N}{A \times B} \simeq \frac{A}{M} \times \frac{N}{B}$ (b) $\frac{A \times B}{M \times N} \simeq \frac{A}{M} \times \frac{B}{M}$	(c) $\frac{M \times N}{A \times B} \simeq \frac{A}{M} \times \frac{B}{N}$ (d) $\frac{M \times N}{A \times B} \simeq \frac{M}{A} \times \frac{N}{B}$
2. If R be a Euclidean ring, then any sum of a finite number of :	γ finitely generated R —module M is the direction
(a) submodules	(c) cyclic submodules
(b) simple module	(d) none of the above
3. A Boolean noetherian ring is fini element(s).	te and is a finite direct product of fields with
(a) one	(c) three
(b) two	(d) four
4. If R is noetherian, then each idea	al contains a finite product of ideals.
(a) nil	(c) prime
(b) nilpotent	(d) none of the above
5. A ring A is said to be an algebra	over F , if A is a vector space over F such that

(c) $\alpha(ab) \neq (\alpha a)b \neq a(\alpha b)$

(d) $\alpha(ab) = (\alpha a)b = a(\alpha b)$

(a) $\alpha(ab) \neq (\alpha a)b = \alpha(\alpha b)$

(b) $\alpha(ab) = (\alpha a)b \neq \alpha(\alpha b)$

6. Let A be an algebra, with unit element of the m . Then every element in A satisfies elegree	over F , and let dimension of A over F some non trivial polynomial in $F[x]$ of
(a) at least m	(c) m
(b) at most m	(d) none of the above
7. If V is finite dimensional vector space over F, then $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is:	
(a) 0	(c) any nonzero value
(b) 1	(d) none of the above
8. If $T: \mathbb{R}^2 \to \mathbb{R}^2$, then which of the following is a linear transformation?	
(a) $T(x,y) = (x , y)$	(c) $T(x,y) = (2x + 3y, 5x - 6y)$
(b) $T(x,y) = (x+1, y-x)$	(d) none of the above
9. Let $A: \mathbb{R}^6 \to \mathbb{R}^5$ and $B: \mathbb{R}^6 \to \mathbb{R}^7$ be of the following is not possible? :	two linear transformations, then which
(a) A and B both are onto	(c) A is one-one and B is not one-one
(b) A and B are one-one	(d) A is onto and B is one-one
10. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x, y)$ representation $[T]_S$ of T relative to the is:	$S = (2x + 3y, 4x - 5y)$, then the matrix basis $S = \{u_1, u_2\} = \{(1, -2), (2, -5)\}$
$ (i) \left(\begin{array}{cc} 8 & -6 \\ -11 & 11 \end{array}\right) $	(c) $\begin{pmatrix} -6 & -11 \\ 8 & 11 \end{pmatrix}$
(b) $\begin{pmatrix} -6 & 8 \\ -11 & 11 \end{pmatrix}$	$ (d) \left(\begin{array}{cc} 8 & 11 \\ -6 & -11 \end{array} \right) $
11. Let $T \in A(V)$ be nilpotent and let the cyclic with respect to T , then:	ne subspace M of V of dimension m be
(a) dim $mT^k = m - k \forall k \ge m$	(c) dim $mT^k = k - m \forall k \ge m$
(b) dim $mT^k = m - k \forall k \le m$	(d) dim $mT^k = m + k \forall k \le m$
12. Let M be an R -module and let N a Then $\frac{M}{N} \simeq \frac{M}{P} / \frac{N}{P}$ is known as :	nd P be submodules of M with $P \subseteq N$.
(a) First isomorphism theorem	(c) Third isomorphism theorem
(b) Second isomorphism theorem	(d) none of the above

- 13. Which of the following statement is not true?
 - (a) An ideal P in a commutative ring R is prime if P = R and P is such that $ab \in P$ then $a \in P$ or $b \in P$.
 - (b) An ideal P in a commutative ring R is prime if $P \neq R$ and P is such that $ab \in P$ then $a \in P$ or $b \in P$.
 - (c) If F is a field, then F[x] is a PID.
 - (d) An R-module M is a torsion free module if Tor M = 0.
- 14. Let R be a PID, and let F be a free R-module with a basis consisting of n elements. Then any submodule K of F is also free with a basis consisting of m elements, such that
 - (a) m = n

(c) $m \leq n$

(b) $m \ge n$

- (d) none of the above
- 15. Let $A = \begin{pmatrix} \lambda & a \\ 0 & \lambda \end{pmatrix}$ where, $a \neq 0$. If m(x) and $\Delta(x)$ are the minimal and the characteristic polynomial respectively of A, then:
 - (a) $m(x) \neq \Delta(x)$
 - (b) The degree of the minimal polynomial is 1
 - (c) $m(x) = \Delta(x)$
 - (d) A has two distinct characteristic roots.
- 16. Let $A = \begin{pmatrix} 7 & 1 & 0 & 0 \\ 0 & 7 & 1 & 0 \\ 0 & 0 & 7 & 1 \\ 0 & 0 & 0 & 7 \end{pmatrix}$ be the Jordan block of order 4, then:
 - (a) Characteristic polynomial is $(t-7)^4$
 - (b) minimal polynomial is $(t-7)^4$
 - (c) 7 is the only eigenvalue
 - (d) All of the above
- 17. The abelian group generated by x_1 and x_2 subject to $2x_1 = 0, 3x_2 = 0$ is isomorphic to:
 - (a) Z

(c) Z₆

(b) \mathbb{Z}_2

(d) none of the above

- 18. Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be the linear mapping satisfying $T(e_1) = e_2, T(e_2) = e_3, T(e_3) = 0, T(e_4) = e_3$, where e_1, e_2, e_3, e_4 is the standard basis of \mathbb{R}^4 . Then:
 - (a) T is idempotent

(c) Rank T = 3

(b) T is invertible

- (d) T is nilpotent
- 19. Let V be a vector space and T be a linear operator on V. If W is a subspace of V, then W is invariant under T, if
 - (a) $T(W) \subseteq W$

(c) T(W) = W

(b) $W \subseteq T(W)$

- (d) none of the above
- 20. The rational canonical form of a 2×2 matrix A with invariant factor (x-3)(x-1) is:
 - (a) $\begin{pmatrix} 0 & -3 \\ 1 & 4 \end{pmatrix}$

(c) $\begin{pmatrix} 0 & 1 \\ 1 & 3 \end{pmatrix}$

(b) $\begin{pmatrix} 1 & -3 \\ 0 & 4 \end{pmatrix}$

(d) none of the above

Section-B

2 each.

(Very Short Answer Type Questions)

Note: Attempt all questions. Answer in 2-3 sentences.

- 1. Define companion matrix.
- 2. Define Nilpotent transformation.
- 3. State Noether-Lasker theorem.
- 4. Define semisimple module.
- 5. State primary Decomposition theorem.
- 6. Show that $\alpha \in F$ is an eigen value of $T \in A(V)$ then $T \alpha I$ is singular.
- 7. Define rank of a linear transformation.
- 8. Write down companion matrix of $f(x) = x^3 4x^2 + 5x + 9$.

Section-C

3 each.

(Short Answer Type Questions)

Note: Attempt all questions.

- 1. Show that the kernel of a module homomorphism is a submodule.
- 2. Find all Jordan normal form for 6×6 matrix having t^3 as the minimal polynomial.
- 3. If $0 \neq T \in A(V)$ and $S \in A(V)$ are invertible, then show that T and $S^{-1}TS$ have same minimal polynomials.
- 4. Let R be a PID, and let M be an R-module, then show that $Tor M = \{x \in M | x \text{ is torsion}\}$ is a submodule of M.
- 5. Let A be a 4×4 matrix with minimal polynomial $m(t) = (t^2 + 1)(t^2 3)$. Then find the rational canonical form of A, if A is the matrix over \mathbb{R} and \mathbb{C} .
- 6. Let A be a $m \times n$ matrix over R. If $M_{ij}(\alpha) = 1 + \alpha e_{ij}$, then show that $M_{ij}(\alpha)A$ is the matrix obtained from A by multiplying the j^{th} row by α and adding it to the i^{th} row. Also $M_{ij}^{-1}(\alpha) = 1 \alpha e_{ij} (i \neq j)$.
- 7. Let the linear transformation $T \in A(V)$ be nilpotent, if $\alpha_0 \neq 0$ then show that $\alpha_0 + \alpha_1 T + \cdots + \alpha_m T^m$, is invertible where $\alpha_i \in F, 0 \leq i \leq m$.
- 8. Show that every submodule and every quotient module of an artinian module is artinian.

Section-D

5 each.

(Long Answer Type Questions)

Note: Attempt all questions.

1. State and prove Hilbert basis theorem.

OR.

If M is a free module with a basis (e_1, e_2, \dots, e_n) , then prove that $M \simeq \mathbb{R}^n$.

2. Let U and V be two vector spaces over a field F of dimensions m and n respectively. Then show that Hom(U,V) is a vector space over F of dimension mn.

OR

Let V be finite dimensional vector space over field F and let $T(\neq 0) \in A(V)$. Then prove that V has a vector v such that the minimal polynomials of T and of v relative to T are equal. 3. Find the Jordan canonical form of

$$A = \left(\begin{array}{cccc} 5 & 1 & -2 & 4 \\ 0 & 5 & 2 & 2 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 4 \end{array}\right)$$

OR

State and prove Fundamental structure theorem for finitely generated modules over a PID.

4. Find the invariant factors of the following matrix over $\mathbb{Q}[x]$:

$$\left(\begin{array}{ccccc}
5-x & 1 & -2 & 4 \\
0 & 5-x & 2 & 2 \\
0 & 0 & 5-x & 3 \\
0 & 0 & 0 & 4
\end{array}\right)$$

 ${\rm OR}$

Let W be a subspace of V and let $T \in Hom(V, V)$ such that $TW \subseteq W$. Show that W is a T-cyclic subspace if and only if there exists an element $w \in W$ such that $w, Tw, \dots, T^{k-1}w$ is a basis of W for some $k \geq 1$.