Roll No.

E-520

M. A./M. Sc. (Second Semester) (Main/ATKT) EXAMINATION, May-June, 2021

MATHEMATICS

Paper Second

(Real Analysis—II)

Time: Three Hours [Maximum Marks: 80

Note: Attempt all Sections as directed.

Section—A

1 each

(Objective/Multiple Choice Questions)

Note: Attempt all questions.

Choose the correct answer:

- 1. Let $f:[a,b] \to \mathbb{R}$ be bounded function and α be monotonic increasing function. If P^* is a refinement of the partition P of the interval [a, b], then :
 - (a) $U(P, f, \alpha) \le U(P^*, f, \alpha)$
 - (b) $U(P, f, \alpha) \le L(P, f, \alpha)$
 - (c) $L(P, f, \alpha) \le L(P^*, f, \alpha)$
 - (d) None of the above

2. The value of $\int_0^1 x d[x]$ is:

- (a) 0
- (b) 1
- (c) $\frac{1}{2}$
- (d) -1
- 3. If RS(P, Q, f, α) be RS-sum of f relative to α on [a, b] and corresponding to the partition P and the intermediate partition Q, then:
 - (a) $U(P, f, \alpha) \le RS(P, Q, f, \alpha)$
 - (b) $RS(P, Q, f, \alpha) \le U(P, f, \alpha)$
 - (c) $L(P, f, \alpha) \le RS(P, Q, f, \alpha)$
 - (d) Both (b) and (c)
- 4. If $f \in RS(\alpha)$ on [a, b], then which of the following is true?
 - (a) $4f \in RS(\alpha)$
 - (b) $|f| \in RS(\alpha)$
 - (c) $f^2 \in RS(\alpha)$
 - (d) All of the above
- 5. Which of the following is not true?
 - (a) $m * \phi = 0$
 - (b) $m*({x}) = 0$
 - (c) $A \subseteq B \rightarrow m^*(B) \le m^*A$
 - (d) m*(A+x) = m*(A)

6. If $m^*(E) = 0$, then E:

- (a) is measurable
- (b) is never measurable
- (c) may not be measurable
- (d) None of the above

7. Which of the following is true?

- (a) $(-\infty, a]$ is measurable.
- (b) (a, ∞) is measurable.
- (c) Both (a) and (b)
- (d) None of the above

8. Let f be a function defined on a measurable set E. Then f is measurable iff $f^{-1}(G)$ is measurable :

- (a) For any open set G in R
- (b) For any closed set G in R
- (c) Both (a) and (b)
- (d) None of the above

9. Which of the following is not true?

- (a) A simple function is always measurable.
- (b) Every step function is a simple function.
- (c) A continuous function on measurable set is measurable.
- (d) Every measurable function is continuous

10. A function $f: \mathbb{R} \to \{0,1\}$ defined by :

$$f(x) = \begin{cases} 1, & \text{if } 0 \le x < 1 \\ 0, & \text{otherwise} \end{cases}$$

- (a) is measurable.
- (b) is continuous.
- (c) is measurable but not continuous.
- (d) is continuous but not measurable.

11. A function $f:[0,1] \rightarrow \mathbb{R}$ defined by :

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$

- (a) is Lebesgue integrable.
- (b) is Riemann integrable.
- (c) is Lebesgue integrable but not Riemann integrable.
- (d) is Riemann integrable but not Lebesgue integrable.

12. Consider the following statements:

(I) If
$$f = 0$$
 a. e. on E then $\int_{E} f = 0$.

- (II) If $\int_{E} f = 0$ then f = 0 a. e. on E.
- (a) (I) is true and (II) is false.
- (b) (II) is true and (I) is false.
- (c) (I) and (II) both are true.
- (d) (I) and (II) both are false.

13. If f is an integrable function, then $\left| \int f \right| = \int |f|$ when:

- (a) $f \ge 0$ a. e.
- (b) $f \le 0$ a. e.
- (c) Either $f \ge 0$ a. e. or $f \le 0$ a. e.
- (d) None of the above

- 14. Consider the following statements:
 - (I) A bounded monotone function is a function of bounded variation.
 - (II) A continuous function is of bounded variation.
 - (a) (I) is true and (II) is false.
 - (b) (II) is true and (I) is false.
 - (c) (I) and (II) both are true.
 - (d) (I) and (II) both are false.
- 15. Consider the following statements:
 - (I) Absolutely continuous function on [a, b] is of bounded variation.
 - (II) If f' = 0 a. e., then f is constant function.
 - (a) (I) and (II) both are true
 - (b) (I) is true and (II) is false.
 - (c) (II) is true and (I) is false.
 - (d) (I) and (II) both are false.
- 16. Let f(x) = |x|, then $D^+ f(0) =$
 - (a) -1
 - (b) 0
 - (c) 1
 - (d) None of the above
- 17. Let X = [0, 16] and $f: X \to \mathbb{R}$ be a function defined by $f(x) = x^{-1/4}, x \in X$. Then:
 - (a) $f \in L^4(X)$
 - (b) $f \in L^1(X)$
 - (c) Both (a) and (b)
 - (d) None of the above

- 18. If $f, g \in L^2[a, b]$, then:
 - (a) $f.g \in L^2$
 - (b) $f + g \in L^1$
 - (c) $f.g \in L^1$
 - (d) None of the above
- 19. If $0 and <math>f, g \in L^p(\mu)$ be non-negative, then :

[6]

- (a) $|| f + g ||_p \le || f ||_p + || g ||_p$
- (b) $|| f + g ||_p \ge || f ||_p + || g ||_p$
- (c) $||fg|| \le ||f||_p ||g||_p$
- (d) None of the above
- 20. Which of the following is a pair of conjugate numbers?
 - (a) 3, -3
 - (b) 3, 3
 - (c) 2, 2
 - (d) 4, 4

Section—B

 $1\frac{1}{2}$ each

E-520

(Very Short Answer Type Questions)

Note: Attempt all questions.

- 1. Define Riemann-Stieltjes sum.
- 2. Define Rectifiable curves.
- 3. Define Lebesgue measurable set.
- 4. Define simple function.
- 5. Define Lebesgue integral of non-negative measurable function.
- 6. Write the statement of Lebesgue Differentiation theorem.
- 7. Write the statement of Jordan Decomposition theorem.

- 8. Write the statement of Lebesgue Monotone Convergence theorem.
- 9. Define L^p space.
- 10. Write the statement of Schwarz's inequality.

 $2\frac{1}{2}$ each

(Short Answer Type Questions)

Note: Attempt all questions.

- 1. If $f, g \in RS(\alpha)$, then show that $f, g \in RS(\alpha)$.
- 2. Let $f \in RS(\alpha)$ on [a, b] and m, M are the bounds of the function f. Then show that :

$$m[\alpha(b) - \alpha(a)] \le \int_a^b f d\alpha \le M[\alpha(b) - \alpha(a)].$$

- 3. If $m^*(E) = 0$, then show that E is measurable.
- 4. Let f be a measurable function defined on a measurable set E. Then prove that |f| is also measurable on E.
- 5. Evaluate the Lebesgue integral of the function $f: [0,1] \rightarrow \mathbb{R}$ defined by :

$$f(x) = \begin{cases} \frac{1}{x^{3/2}}, & \text{if } 0 < x \le 1\\ 0, & \text{if } x = 0 \end{cases}$$

and show that f is Lebesgue integrable on [0, 1].

- 6. Prove that difference of two measurable sets is a measurable set.
- 7. If the function f assumes its maximum at c, then prove that $D^+ f(c) \le 0$ and $D f(c) \ge 0$.
- 8. If f and g are absolutely continuous functions on [a, b], then prove that f + g is also absolutely continuous.
- 9. If $f \in L^p[a,b]$ and $g \le f$, then prove that $g \in L^p[a,b]$.
- 10. If $f, g \in L^2$, then show that :

$$|| f + g ||_2 \le || f ||_2 + || g ||_2$$

P. T. O.

[8] E-520

Section—D 4 each

(Long Answer Type Questions)

Note: Attempt all questions.

1. Let f be a bounded function and α be a monotonically increasing function on [a, b]. Then show that $f \in RS(\alpha)$ on [a, b] iff for every $\epsilon > 0$, there exists a partition P such that :

$$U(P, f, \alpha) - L(P, f, \alpha) \le$$
.

Or

Let γ be a continuously differentiable curve on [a, b]. Then show that γ is rectifiable and $\wedge_{\gamma}(a, b) = \int_a^b |\gamma'(t)| dt$.

Show that a countable union of measurable sets is a measurable set.

Or

Prove that every Borel set in R is measurable.

3. State and prove Fatou's lemma.

0r

Let f be a bounded function defined on [a, b]. If f is Riemann integrable on [a, b], then show that it is Lebesgue integrable on [a, b] and :

$$R\int_{a}^{b} f d\alpha = \int_{a}^{b} f d\alpha.$$

4. Let *f* be a Lebesgue integrable function on [*a*, *b*]. Then show that the indefinite integral of *f* is a continuous function of bounded variation on [*a*, *b*].

Or

If f is absolutely continuous on [a, b] and f' = 0 a. e., then show that f is constant function.

5. State and prove Hölder's inequality for L^p spaces.

 Ω

State and prove Minkowski's inequality for L^p spaces.

E-520