Roll No.

E - 998

M. A./M. Sc. (Fourth Semester) (Main/ATKT) EXAMINATION, May-June, 2021

MATHEMATICS

Paper Fourth (B)

(Wavelets—II)

Time: Three Hours] [Maximum Marks: 80

Note: Attempt all Sections as directed.

Section—A

1 each

(Objective/Multiple Choice Questions)

Note: Attempt all questions.

Choose the correct answer:

1. If f and g are in $L^2(\mathbf{R})$, then $\int_{-\infty}^{\infty} f'(x)g(x)dx =$

(a)
$$\int_0^1 f'(x) g'(x) dx$$

(b)
$$\int_{-\infty}^{\infty} f(x) g'(x) dx$$

(c)
$$-\int_{-\infty}^{\infty} f(x) g'(x) dx$$

- (d) None of the above
- 2. Let H be a Hilbert space and $\{e_j: j=1,2,....\}$ be the elements of H. Then $f=\sum_{j=1}^{\infty} \left\langle f,e_j\right\rangle e_j$ implies :

(a)
$$\|f\|^2 \le \sum_{j=1}^{\infty} \left| \left\langle f, e_j \right\rangle \right|^2$$

(b)
$$\|f\|^2 \ge \sum_{j=1}^{\infty} \left| \left\langle f, e_j \right\rangle \right|^2$$

(c)
$$\|f\|^2 = \sum_{j=1}^{\infty} \left| \left\langle f, e_j \right\rangle \right|^2$$

- (d) None of the above
- 3. Give an expression of $t_q(\xi)$, for $q \in \mathbf{Z}$ and $\xi \in \mathbf{R}$.
- 4. Define MSF wavelet.

- 5. If $\{k_l \mid l \in {\bf Z}\}$ and $\{{\bf I}_l: l \in {\bf Z}\}$ are partitions of K and I respectively, then :
 - (a) $K_l = 2^{j_l} I_2 j_l$
 - (b) $K_l = 2^{j_l} I_l$
 - (c) $\mathbf{K}_{2^{j_l}} = \mathbf{I}_2 j_l$
 - (d) None of the above
- 6. Let $\{v_j \mid j \in \mathbf{Z}\}$ and $\{w_j \mid j \in \mathbf{Z}\}$ closed subspaces of $L^2(\mathbf{R})$, then which of the following is true?
 - (a) $V_j = \bigoplus_{l=-\infty}^{j-1} W_l$
 - (b) $V_j = \bigoplus_{l=1}^{\infty} W_l$
 - (c) $V_j = \bigcup_{l=1}^{\infty} W_l$
 - (d) None of the above
- 7. If ψ is an MRA wavelet, then:
 - (a) $D_{\psi}(\xi) < 0\xi \in T$
 - (b) $D_{\psi}(\xi) = 1\xi \in \mathbf{T}$
 - (c) $D_{\psi}(\xi) > 0 \xi \in T$
 - (d) Both (b) and (c) hold

8.	Limit of a sequence of MRA wavelets is always a/an:	
	(a)	Orthonormal wavelet
	(b)	Haar wavelet
	(c)	MRA wavelet
	(d)	MSF wavelet
9.	Define tight frame.	
10.	Define frame operator.	
11.	Define Zak transform.	
12.	Define smooth frame for $H^2(\mathbf{R})$.	
13.	Define \lceil_N the subgroup of T .	
14.	Fast Fourier transform is a/an:	
	(a)	Fourier transform
	(b)	Advanced transform
	(c)	Algorithm
	(d)	Cosine transform
15.	Define Dual frame.	
16.	If A	and B are frame bounds of a frame $\{g_{m,n} \mid m,n \in \mathbf{Z}\}$,
	then	bounds of $\left \operatorname{Rg}(s,t) \right ^2$ are and

[5] E-998

17. The orthogonal projection operator P_j , $j \in \mathbb{Z}$ from $L^2(\mathbb{R})$ onto V_j is given by :

(a)
$$\sum_{k \in \mathbb{Z}} \langle f, \psi_{j,k} \rangle \psi_{j,k}(x)$$

(b)
$$\sum_{k \in \mathbf{Z}} \langle f, \phi_{j,k} \rangle \phi_{j,k}(x)$$

(c)
$$\sum_{k \in \mathbf{Z}} \langle \phi_{j,k} \psi_{j,k} \rangle \psi_{j,k}(x)$$

- (d) None of the above
- 18. The domain and codomain of a frame operator F are and respectively.
- 19. If $f \in l^2(\mathbf{Z})$, then $||f||_{l^2(\mathbf{Z})} = \dots$.
- 20. Write an expression for Maxian hat function.

Section—B

2 each

(Very Short Answer Type Questions)

Note: Attempt all questions.

- 1. Give an example of a dense subset of $L^2(\mathbf{R})$.
- 2. Give the necessary and sufficient conditions for a function $\psi \in L^2(\mathbf{R})$ to be orthonormal wavelet.
- 3. Write all the characteristics for a function m_0 to be low pass filter.

[6] E-998

4. For a 2π -periodic function g on \mathbf{R} and a set K (to be the set required in the characterization of low pass filter) prove that :

$$\int_{K} g(\xi) d_{\xi} = \int_{-\pi}^{\pi} g(\xi) d_{\xi}$$

- 5. Find A and B for $f \in \mathbb{C}^2$ and $\{\phi_1, \phi_2, \phi_3\}$ to be tight frame.
- 6. If A and B are the bounds of $f \in H$, then write frame bounds of $S^{-1} = (F * F)^{-1}$.
- 7. If P, Q and T are $n \times n$ matrix, and A # and B^d have usual meanings, prove that :

$$P^{\#}O^{d} = T^{\#}$$

8. Give statement for fast Fourier transform.

3 each

(Short Answer Type Questions)

Note: Attempt any *eight* questions.

1. Suppose that $\left\{e_j: j=1,2,.....\right\}$ is a system of vectors in a Hilber space \mathbf{H} satisfying $\left\|f\right\|^2 = \sum_{j=1}^{\infty} \left|\left\langle f, e_j \right\rangle\right|^2$ for all $f \in \mathbf{H}$. If $\left\|e_j\right\| \ge 1$ for j=1,2,....., then prove that $\left\{e_j: j=1,2,.....\right\}$ is an orthonormal basis for \mathbf{H} .

[7] E-998

2. if ψ is an orthonormal wavelet and $|\hat{\psi}|$ is continuous at zero, then prove that $\hat{\psi}(0) = 0$.

3. Let μ_1, \dots, μ_n be 2π -periodic functions and set :

$$\mathbf{M}_{j} = \sup_{\boldsymbol{\xi} \in \mathbf{T}} \left(\left| \mu_{j} \left(\boldsymbol{\xi} \right) \right|^{2} + \left| \mu_{j} \left(\boldsymbol{\xi} + \boldsymbol{\pi} \right) \right|^{2} \right)$$

Then prove that:

$$\int_{-2^n \pi}^{2^n \pi} \prod_{j=1}^n \left| \mu_j \left(2^{-j} \xi \right) \right|^2 d\xi \le 2\pi M_1 M_2 \dots M_n$$

4. Suppose that:

$$\left\{ \psi^{(n)}: n = 1, 2, \dots \right\}$$

is a sequence of MRA = wavelet converging to ψ in $L^2(\mathbf{R})$. If ψ is also a wavelet, then prove that ψ is an MRA wavelet.

- 5. Prove that the translation operator T_k commutes with $\mathbf{F}^*\mathbf{F}$, where \mathbf{F} is a frame operator.
- 6. Suppose $g \in L^2(\mathbf{R})$ and $\{g_{m,n} : m, n \in \mathbf{Z}\}$ is a frame with frame bounds A and B with $0 < A \le B < \infty$, then show that:

$$0 < A \le |Rg(s,t)|^2 \le B < \infty$$

[8] E-998

7. Prove that the vectors:

$$\left\{ \sqrt{\frac{2}{N}} C_k^{(N)} : K = 0, 1, \dots, N - 1 \right\}$$

form an orthonormal system for \mathbf{R}^N .

- Write in short the decomposition algorithm for wavelets.
- 9. Write the reconstruction algorithms for wavelets.

(Long Answer Type Questions)

Note: Attempt all questions.

- 1. Let H be a Hilbert space and $\{e_j: j=1,2,.....\}$ be a family of elements of **H**. Then prove that :
 - (i) $\|f\|^2 = \sum_{j=1}^{\infty} \left| \left\langle f, e_j \right\rangle \right|^2$ for all $f \in \mathbf{H}$ if an only if
 - (ii) $f = \sum_{j=1}^{\infty} \left\langle f, e_j \right\rangle e_j$ with convergence in H, for all $f \in \mathbf{H}$.

[9] E-998

Or

Let $\{v_j : j \ge 1\}$ be a family of vectors in a Hilbert space H such that :

(i)
$$\sum_{n=1}^{\infty} \left\| v_n \right\|^2 = c < \infty$$

(ii)
$$v_n = \sum_{m=1}^{\infty} \langle v_n, v_n \rangle v_n \quad \forall n \ge 1$$

Let $F = \overline{\text{span}\{v_j : j \ge 1\}}$. Then prove that dim F = C.

2. Let $m_0 \in C'(\mathbf{R})$ be 2π -periodic function with $m_0(0) = 1$,

$$\left|m_0(\xi)^2\right| + \left|m_0(\xi + \pi)\right|^2 = 1$$
 and there exists a set K \subseteq

 \mathbf{R} as a finite union of closed and bounded intervals with O in the interior of K,

$$\sum_{k \in \mathbf{Z}} \chi_k \left(\xi + 2k\pi \right) = 1 \text{ for } \xi \in \mathbf{R}$$

and $m_0\left(2^{-j}\xi\right)\neq 0$, for $j=1,2,\ldots,\xi\in k$. Then prove that m_0 is a law pass filter for an MRA.

Or

A function $\phi \in L^2(\mathbf{R})$ is a scaling function for an MRA if and only if :

(i)
$$\sum_{k \in \mathbb{Z}} \left| \hat{\phi} \left(\xi + 2k\pi \right) \right|^2 = 1 \, \xi \in \mathbb{T}$$

[10] E-998

(ii)
$$\lim_{j\to\infty} \left| \hat{\phi} \left(2^{-j} \xi \right) \right| = 1 \quad \xi \in \mathbf{R}$$

(iii) There exists a 2π -periodic function m_0 such that :

$$\hat{\phi}(2\xi) = m_0(\xi)\hat{\phi}(\xi) \xi \in \mathbf{R}$$

3. State and prove Bolian low theorem for frames.

Or

Suppose that $\{e_j: j=1,2,....\}$ is a family of elements in a Hilbert space H such that $0 < A \le B < \infty$ satisfying:

$$\mathbf{A} \| f \|^2 \le \sum_{j=1}^{\infty} \left| \left\langle f, e_j \right\rangle \right|^2 \le \mathbf{B} \| f \|^2$$

for all f beloriging to dense subset D of **H**. Then prove that above inequality holds for all $f \in \mathbf{H}$.

4. Write in details about discrete cosine transform and fast cosine transform.

Or

If $N = 2^q$, then prove that $C_N = E_1 E_2 \dots E_q$, where each E_j is an $N \times N$ matrix such that each row has precisely two non-zero entries.