[2]

Roll No.

Total Printed Pages - 8

F- 751

M. Sc. (THIRD SEMESTER) EXAMINATION, Dec. - Jan., 2021-22 (PHYSICS)

PAPER FIRST

(QUANTUM MECHANICS - II)

Time: Three Hours] [Maximum Marks:80

Note: Attempt all sections as directed.

Section - A

(1 Mark each)

(Objective/Multiple Choice Questions)

(1×20=20 marks)

P.T.O.

Note: Attempt all questions.

Choose the correct answer:

- 1. Classical turning points correspond to the following situation in WKB approximation.
 - (A) E = 0
 - (B) V = 0
 - (C) E V = 0
 - (D) None of the above

2. WKB approximation is known as (A) Quantum approximation

- (B) Classical approximation
- (C) Semiclassical approximation
- (D) All of the above
- 3. The variation method is best suited to calculate energies in the:
 - (A) Ist excited state
 - (B) IInd excited state
 - (C) Both (A) and (B)
 - (D) Ground state
- 4. In calculation of lowest upper limit for the ground state energy of He atom using variation method gives accurate

results at
$$\frac{2}{2} = \frac{27}{16}$$
 not $\frac{2}{2} = 2$ due to :

- (A) Improper trail function
- (B) Quantum confinement
- (C) Error in Variatioin Method
- (D) Screening effect
- 5. Green's function for any linear differential operator Ω follows the equation:
 - (A) $O(x, \nabla) G(x x') = \delta(x x')$
 - (B) Ω $(x, \nabla) G(x x') = G(x x')$
 - (C) $O(x, \nabla) G(x x') = G'(x x')$
 - (D) None of the above

F-635

6. Which of the following statement is correct, if we add any Green's function 'G' to any solution 'S' of a homogeneous equation $\Omega S = 0$

- (A) $\Omega G = \delta(x x')$
- (B) $\Omega S = \delta (x x')$
- (C) $\Omega = (G S) = \delta(x x')$
- (D) O(G + S) = S(x x')

7. The asymptotic scattered wave function can be written as:

- (A) $U_{SC} = e^{ikr}$
- (B) Usc = $(f(\theta, \phi)e^{ikr})/r$
- (C) Usc = $f(\theta, \phi)$
- (D) None of these

8. Quantum mechanically, the phenomena of scattering is described as a distortion in the stationary wave pattern caused by:

- (A) Reflection
- (B) Collision
- (C) Presence of a scattering center
- (D) Only (B) and (C)

9. Fermi's Golden Rule calculates.

- (A) Transition probability
- (B) Transition probability per unit time
- (C) probability density
- (D) All of the above

10. Which of the following method is to be used for a perturbation varying slowly with time:

- (A) WKB Method
- (B) Variation Method
- (C) Sudden Approximation
- (D) Adiabatic approximation

11. The scattering amplitude for identical particle is given as:

- (A) $f(\theta, \phi)$
- (B) $|f(\theta,\phi)|^2$
- (C) $f(\theta,\phi) \pm f(\pi-\theta,\phi+\pi)$
- (D) $f(\theta, \phi) \pm f(\pi)$

12. The validity condition for sudden approximation can be written as:

- (A) $\omega f_i \tau >> 1$
- (B) $\omega f_i \tau \ll 1$
- (C) $\omega f_i \tau = 1$
- (D) None of the above

13. Under the action of electrotomagnetic field the momentum of a particle is modified as follows:

(A)
$$P \Rightarrow P - \frac{e}{c}$$

(B)
$$P \Rightarrow P - \frac{eA}{c}$$

(c)
$$P \Rightarrow P + \frac{eA}{c}$$

- (D) No change
- 14. Klein-Gordon equation is valid only for:
 - (A) spin $\frac{1}{2}$ particle
 - (B) spin 1 particle
 - (C) spin 0 particle
 - (D) any particle

15. The form of Diva Hamiltonian is:

(A)
$$H = \frac{p^2}{2m} + v$$
 (B) $H = p^2c^2 + m^2c^4$

(B)
$$H = p^2c^2 + m^2c^2$$

- (C) $H = c\alpha . p + \beta mc^2$ (D) $H = c\alpha . p + \beta mc^2$

16. For dirac's α and β matrices, the following statements are true:

- (A) $\alpha_i^2 = 1$ (B) $\alpha_x \alpha_y + \alpha_y \alpha_x = 0$
- (C) $\alpha_x \beta + \beta \alpha_x = 0$ (D) All the above

17. Divac's equation describes particle with spin:

- (A) 1/2
- (B) 1
- (C) zero
- (D) 2

18. The difference between negative and positive energy states of Divac particles is :-

- (A) mc^2
- (B) 2mc²
- (C) m/c²
- (D) no separation.

19. In Dirac hamiltonian the following term comples the orbital motion of electron to its spin:

- (A) β mc²
- (B) $c\alpha p$
- (C) Both (A) and (B)
- None of the above

20. As per Dirac, all the negative energy states are occupied by:

- Positron
- (B) Holes
- Electrons
- Not accupied

[8]

Section - B

(2 Marks each)

(Very short answer type questions)

Note- Attempt all questions.

- 1. Write trial function for hydrogen atoms which can be used in variation method.
- 2. Write the value of minimum energy obtained for the atom using variation method.
- 3. Discuss scattering cross section.
- 4. Construct symmetric and antisymmetric wave function.
- 5. Write an expression for charge density as per Klein-Gorden equation.
- 6. Write an expression for probability current density for Dirace equation.
- 7. Write the anticommutation properties of Dirac's α and β matrices.
- 8. Define spin of Dirac particles in terms of Dirac's α matrices.

Section - C

(3 Marks each)

(Short answer type questions)

 $(8\times3 = 24 \text{ marks})$

Note- Attempt all questions.

- 1. Write the process of obtaining best estimate of the energy of the first excited state using variation method.
- 2. Discuss vander waal's interaction.
- 3. Obtain scattering amplitude in terms of phase shifts of partial waves.
- 4. Explain how is the scattering of identical particles described in quantum mechanics.

- 5. Show the Lorentz covariance of Dirac equation.
- 6. Show that the probability density 'P' and probability current density 'S' satisfy continuity equation in Dirac formulation.
- 7. Obtain energy spectrum of a Dirac particle by solving Dirace equations for plane waves.
- 8. Obtain an expression for spin of a Dirac particle.

Section - D

(5 Marks each)

(Long answer type questions)

(4×5=20 marks)

Note: Attempt all questions.

1. Calculate energy levels of a potential well problem using WKB approximation method.

Or

Derive the connection formulae for WKB solutions near turning points.

2. Obtain an expression for scattering cross section for scattering by a square well.

Or

Obtain differential cross section for scattering by coulomb potential.

3. Obtain transition probability for Harmonic perturbations.

Or

Obtain expressions for Dirac's α and β matrices.

4. Find the energy eigen values of a relativistic Dirac particle moving under central field.

Or

Calculate the spin-orbit interaction energy of a Dirac particle.

F-635