Roll No.

Total Printed Pages - 10

F - 753

M.Sc. (Third Semester) EXAMINATION, Dec. - Jan., 2021-22 **PHYSICS** Paper Third (SOLID STATE PHYSICS - I)

[Time : Three Hours]

[Maximum Marks : 80]

[Minimum Pass Marks : 16]

Note: Attempt all sections as directed

Section - A (Objective / Multiple Choice Questions) (1 Mark each)

Note: Attempt all questions.

Choose the correct answer.

[2]

1. The energy of the lowest band at K = 0, when the kroing-Penney potential P<<1 is

(A)
$$\frac{4\pi^2 \text{ma}}{\text{h}^2 \text{P}}$$

(B)
$$\frac{h^2P}{4\pi^2ma}$$

(C)
$$\frac{4\pi^2 mP}{h^2 a}$$

(D)
$$\frac{h^2a}{4\pi^2mP}$$

2. The expression for fermi-derac distribution function is

(A)
$$f(E) = \frac{1}{1 + e^{\beta(E - \mu)}}$$

(B)
$$f(E) = \frac{1}{1 - e^{\beta(E - \mu)}}$$

(C)
$$f(E) = \frac{1}{1 + e^{(E-\mu)}}$$

(D)
$$f(E) = \frac{1}{e^{(E-\mu)}}$$

3. The range of ware vector K, that corresponds to the first Brillouin zone in metal is:

(A)
$$\frac{-a}{\pi}$$
 to $+\frac{a}{\pi}$ (B) $\frac{-\pi}{2a}$ to $\frac{+\pi}{2a}$

(B)
$$\frac{-\pi}{2a}$$
 to $\frac{+\pi}{2a}$

(C)
$$\frac{-\pi}{a}$$
 to $+\frac{\pi}{a}$

(C)
$$\frac{-\pi}{a}$$
to+ $\frac{\pi}{a}$ (D) $\frac{-a}{2\pi}$ to+ $\frac{a}{2\pi}$

- 4. A particles of 3-dimensional solid are bosonic in nature have fequency ω are related by $\omega \alpha k^2$ the specific heat of the system at two temperature is proportional to.
 - (A) $T^{\frac{1}{2}}$

 $\mathbf{T}^{\frac{3}{2}}$

(C) T^3

- Т
- 5. The effective mass of a Bloch electron is a function of K and μ given by:-
 - (A) $m^* = \frac{h^2}{4\pi^2} \left(\frac{d^2E}{dK^2}\right)^{-1}$
 - (B) $m^* = \frac{4\pi^2}{h^2} \left(\frac{d^2K}{dE^2} \right)^{-1}$
 - (C) $m^* = \frac{h^2}{4\pi^2} \left(\frac{d^2K}{dE^2} \right)^{-1}$
 - (D) $m^* = \frac{4\pi}{h} \left(\frac{d^2 K}{dE^2} \right)^{-1}$
- The London penetration depth is given by :-
 - (A) $\lambda = \left[\frac{m}{n_s \mu_0 e^2}\right]^{v^2}$ (B) $\lambda = \left[\frac{n_s}{m \mu_0 e^2}\right]^{v^2}$
 - (C) $\lambda = \left[\frac{n_s}{m^2 n_{s^2} \mu_0}\right]^{v^2}$ (D) None of the above

- 7. The number of optical phonon branches for two atoms basis in the primitive cell is [in 3-dimension]
 - (A) 1
 - (B) 2

 - (D) 8
- 8. The density of charge carriers in a pure semiconductor is proportional to:
 - (A) $\exp\left(\frac{-Eg}{K_aT}\right)$
 - (B) $\exp\left(\frac{-2Eg}{K_BT}\right)$
 - (C) $\exp\left(\frac{-Eg}{K_{\rm p}T^2}\right)$
 - (D) $\exp\left(\frac{-Eg}{2K_BT}\right)$
- 9. In the original BCS model of superconductivity the dependence of Tc on isotope mass is-
 - $Tc \alpha M^{-1}$
 - $Tc\alpha M$
 - (C) $Tc\alpha M^{-1/2}$
 - (D) $Tc\alpha M^{\frac{1}{2}}$

10. The expression for fermi temperature is

- (A) $T_F = \frac{E_F}{K_B}$
- (B) $T_F = \frac{K_B}{E_F}$
- $(C) \quad T_{\rm F} = \frac{1}{K_{\rm B}}$
- (D) $T_F = \frac{1}{E_F}$

11. The fermi level for an n-type semiconductor is nearer to

- (A) Conduction band
- (B) Valence band
- (C) Middle of energy gap
- (D) None of the above

12. The value of the radius of fermi sphere (K_F) is proportional to:

- (A) $N^{\frac{3}{2}}$
- (B) $N^{\frac{2}{3}}$
- (C) $N^{\frac{1}{2}}$
- (D) $N^{\frac{1}{3}}$

13. According to the free electron model the average kinetic energy of electron at an absolute temperature T μ [in 3-dimension]

- (A) $\frac{1}{2}$ KT
- (B) $\frac{3}{2}$ KT
- (C) $\frac{5}{2}$ KT
- (D) $\frac{7}{2}$ KT

14. The magnetic susceptibility of a superconductor is:

- (A) Positive and small
- (B) Positive and unity
- (C) Negative and unity
- (D) Positive and unity

15. The superconducting energy gap is of the order of

- (A) K_BT_C
- (B) $2K_{\rm B}$
- (C) $2T_{\rm C}$
- (D) None of the above

16. When $T = T_C$ the penetration depth becomes to:

- (A) Infinite
- (B) Zero
- (C) Half
- (D) None of the above

17. Hall constant $R_{\rm H}$ is

- (A) $R_H = -ne$
- (B) $R_H = \frac{-1}{ne}$
- (C) $R_H = \frac{-ne}{m}$
- (D) $R_H = \frac{m^2}{ne^2}$

18. The dependence of the mobility of charge carriers in a semiconductor is given by:

- (A) $\mu \alpha \frac{1}{T}$
- (B) $\mu \alpha \frac{1}{T^{\frac{3}{2}}}$
- (C) $\mu\alpha T^{\frac{3}{2}}$
- (D) $\mu\alpha T^2$

19. Second exuted state energy of the electron in a potential well of length "L" is:

(A)
$$E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{L}\right)^2$$

(B)
$$E_n = \frac{\hbar^2}{2m} \left(\frac{\pi}{L}\right)^2$$

(C)
$$E_n = \frac{4\hbar^2}{2m} \left(\frac{\pi}{L}\right)^2$$

(D) None of the above

20. Ehe essential condition for superconductor is:

- (A) $T > T_C$ and H = 0
- (B) $T < T_C$ and $H > H_C$
- (C) $T < T_C$ and $H < H_C$
- (D) None of the above

[10]

Section - B

(Very Short Answer Type Questions)

(2 Marks each)

Note: Attempt all questions.

- 1. Explain the Bloch theorem.
- 2. What is meissner effect?
- 3. What is zone boundary?
- 4. Define A.C Josepshon effect.
- 5. Give the concept of holes.
- 6. Discuss the zone scheme.
- 7. Explain how cooper pairs are formed in superconductor.
- 8. Explain phonon momentum.

Section - C

(Short Answer Type Questions)

(3 Marks each)

Note: Attempt all questions.

- 1. What is a kronig-penney model? Explain it.
- 2. What is Band gap of semiconductor crystal. Discuss the direct and indirect band gap.
- 3. Differentiate the Type-I and Type-II superconducter.
- 4. What is a coherence length?
- 5. What do you mean by quantization of elastic wave?
- 6. What is an optical and acoustic mode?
- 7. Explain how to destruct the superconductivity by external magnetic field.
- 8. Explain the free electron model.

Section - D

(Long answer type questions)

(4 Marks each)

Note: Attempt any five questions.

1. Derive the equation of motion of charse carrier in semiconductor cristal and explain the physical derivation of

$$F = \hbar \frac{dk}{dt}$$

- 2. Write the vibrational spectrum of linear diatomic latitice and it consists of two branches. Discuss main features of vibration.
- 3. Derive London's equation and show that these equation can account for a perfect diamagnetism property of an ideal superconducter.
- 4. What is fermi surface? Explain how are these constructed and studied experimentally.
- 5. Salve wave equation for an electron in periodic potential and explain origin of energy band gap in solid.
- 6. A wire of lead having a diameter of 1mm at 4.2k. The critcal temperature for lead is 7.18k and $H_{C}(0) = 6.5 \times 10^{4} \, \text{Amp/}_{m} \ .$ Then caclulate the critical current of wire.
- 7. Obtain expression for intrinsic carrier concentration in semiconductor.

F - 753

F - 753