F - 310

M.A. / M.Sc. (First Semester) Examination, Dec.-Jan., 2021-22 MATHEMATICS Paper Second (Real Analysis - I)

Time : Three Hours] [Maximum Marks : 80

Note: All questions are compulsory.

SECTION-A (Objective Type Questions)

1 each

Note:- All questions are compulsory.

- 1. The sequence $\{f_n\}_{n=1}^{\infty}$, where $f_n(x) = nx(1-x)^n$ is
 - (a) converge uniformly on [0, 1].
 - (b) does not converge uniformly on [0, 1]. 0 is the point of non-uniformly convergence.
 - (c) does not converge uniformly on [0,1], 1 is the point of non-uniformly convergence.
 - (d) none of the above.
- 2. If $f_n(x) = n^2 x (1-x)^n$, $x \in \mathbf{R}$ for each $n \in \mathbf{N}$, then
 - (a) the limit function f is continuous
 - (b) the $\{f_n(x)\}\$ does not converge to f uniformly
 - (c) Both (a) and (b)
 - (d) none of the above.
- 3. The series $\frac{4}{\pi} \left[\sin x \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} \cdots \right]$ is converge uniformly in
 - (a) $-\pi < x < \pi$
 - (b) $-\pi < x \le \pi$
 - (c) $-\pi \le x \le \pi$
 - (d) $-\pi \le x < \pi$

- 4. The series $f(x) = \sum_{n=1}^{\infty} \frac{1}{n^3 + n^4 x^2}$ is
 - (a) converge uniformly for all $x \in \mathbf{R}$
 - (b) does not converge uniformly for $x \in \mathbb{R}$, 0 is the point of non-uniformly convergence.
 - (c) does not converge uniformly for $x \in \mathbb{R}$, 1 is the point of non-uniformly convergence.
 - (d) none of the above.
- 5. Sum of the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} \cdots$ is:
 - (a) $\frac{3}{2}\log 2$
 - (b) $\frac{1}{2} \log 2$
 - (c) $\frac{2}{3}\log 2$
 - (d) log 2
- 6. The power series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{2n-1}$ is convergent for,
 - (a) $-1^{-1} < x \le 1$
 - (b) -1 < x < 1
 - (c) $0 < x \le 1$
 - (d) none of the above
- 7. The power series $1 + 2x + 3x^2 + 4x^3 + \cdots$ has radius of convergence equal to
 - (a) e
 - (b) 1
 - (c) 2
 - (d) none of the above
- 8. The power series $x + \frac{x^2}{2^2} + \frac{2!}{3^3}x^3 + \frac{3!}{4^4}x^4 + \cdots$ is
 - (a) converges (absolutely) for all values of x.
 - (b) does not converges for any values of x (other than 0).
 - (c) converges (absolutely) for |x| < e
 - (d) none of the above

9. Let $A \in L(X,Y)$ and Ax = 0 only when x = 0, then

- (a) A is one-one
- (b) A is onto
- (c) both (a) and (b)
- (d) none of the above

10. Let X, Y, Z be a vector space and let $A \in L(X, Y)$, $B \in L(Y, Z)$. then

- (a) $BA \in L(X, Z)$
- (b) A^{-1} is linear
- (c) A^{-1} is invertible
- (d) all of the above

11. Let $A, B \in L(\mathbb{R}^n, \mathbb{R}^m)$, then

- (a) $||A + B|| \le ||A|| + ||B||$
- (b) $||A + B|| \ge ||A|| + ||B||$
- (c) ||A + B|| = ||A|| + ||B||
- (d) none of the above

12. If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and c is a scalar, then

- (a) $||cA|| \le |c|||A||$
- (b) $||c\dot{A}|| \ge |c|||A||$
- (c) ||cA|| = |c|||A||
- (d) none of the above

13. If x + y + z = u, y + z = uv, z = uvw, then $\frac{\partial(x, y, z)}{\partial(u, v, w)}$ is:

- (a) uv^2
- (b) u^2v
- (c) $-uv^2$
- (d) $-u^2v$

14. Let to every $A \in L(\mathbb{R}^n, \mathbb{R}^1)$ corresponds a unique $y \in \mathbb{R}^n$ Such that Ax = x.y, then

- (a) ||A|| = |x|
- (b) ||A|| = |y|
- (c) ||A|| = |x||y|
- (d) none of the above

15. $\frac{\partial(u,v,w)}{\partial(x,y,z)} \cdot \frac{\partial(x,y,z)}{\partial(u,v,w)}$ is:

- (a) 0
- (b) 1
- (c) -1
- (d) none of the above

16. The function f(x,y) is maximum at a stationary point if

- (a) $(rt s^2) > 0$ and r > 0
- (b) $(rt s^2) < 0$ and r < 0
- (c) $(rt s^2) > 0$ and r < 0
- (d) none of the above.

17. An oriented 0-simplex σ is defined to be

- (a) +**p** $_0$
- (b) \mathbf{p}_0
- (c) both (a) and (b)
- (d) none of the above

18. The positively oriented boundary of Q^4 is:

- (a) $[e_1, e_2, e_3, e_4] + [0, e_2, e_3, e_4] [0, e_1, e_3, e_4] + [0, e_1, e_2, e_4] [0, e_1, e_2, e_3]$
- (b) $[e_1, e_2, e_3, e_4] [0, e_2, e_3, e_4] [0, e_1, e_3, e_4] + [0, e_1, e_2, e_4] + [0, e_1, e_2, e_3]$
- (c) $[e_1, e_2, e_3, e_4] [0, e_2, e_3, e_4] + [0, e_1, e_3, e_4] [0, e_1, e_2, e_4] + [0, e_1, e_2, e_3]$
- (d) $[e_1, e_2, e_3, e_4] [0, e_2, e_3, e_4] + [0, e_1, e_3, e_4] + [0, e_1, e_2, e_4] [0, e_1, e_2, e_3]$

19. Suppose σ_1 and σ_2 have the same set of vertices such that $\Gamma = \sigma_1 + \sigma_2 = 0$, then for all ω , $\int_{\Gamma} \omega$ is:

- (a) 0
- (b) 1
- (c) 2
- (d) none of the above

20. Let $\sigma = [\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2]$ than $\partial \sigma$ is equal to :

- (a) $[\mathbf{p}_0, \mathbf{p}_2] + [\mathbf{p}_0, \mathbf{p}_1] + [\mathbf{p}_1, \mathbf{p}_2]$
- (b) $[\mathbf{p}_0, \mathbf{p}_1] [\mathbf{p}_2, \mathbf{p}_0] + [\mathbf{p}_1, \mathbf{p}_2]$
- (c) $[\mathbf{p}_0, \mathbf{p}_1] + [\mathbf{p}_2, \mathbf{p}_0] + [\mathbf{p}_1, \mathbf{p}_2]$
- (d) $[\mathbf{p}_0, \mathbf{p}_1] + [\mathbf{p}_2, \mathbf{p}_0] + [\mathbf{p}_2, \mathbf{p}_1]$

SECTION-B (Very Short Answer Type Questions)

1.5 each

Note:- Attempt all questions

- 1. Write the Statement of Dirichlet's test.
- 2. Write the Statement of Weierstrass's M-test.
- 3. Define radius of convergence of power series.
- 4. Write the Statement of Abel's theorem for power series.
- 5. Define invertible linear operator.
- 6. Define continuously differentiable mapping.
- 7. What do you mean by stationary point for a function of several variables?
- 8. What do you mean by local maximum value for a real-valued function?
- 9. Define partition of unity.
- 10. Define basic k-forms.

SECTION-C (Short Answer Type Questions)

2.5 each

Note:- Attempt all questions

- 1. Prove that the limit function of uniformly convergent sequence of continuous functions is itself continuous.
- 2. Test for term-by-term integration of the series $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ on [0.1] and show that

$$\int_0^1 \sum_{n=1}^\infty \frac{x^n}{n^2} dx = \sum_{n=1}^\infty \frac{1}{n^2(n+1)}.$$

- 3. Prove that the series obtained by differentiating a power series term by term has the same radius of convergence as the original series.
- 4. Show that

$$\frac{1}{2}(\tan^{-1}x)^2 = \frac{x^2}{2} - \frac{x^4}{4}\left(1 + \frac{1}{3}\right) + \frac{x^6}{6}\left(1 + \frac{1}{3} + \frac{1}{5}\right) - \dots, -1 < x \le 1.$$

5. Let E be an open set in \mathbb{R}^n , f maps E into \mathbb{R}^m and $\mathbf{x} \in E$ and

$$\lim_{\mathbf{h}\to 0} \frac{|\mathbf{f}(\mathbf{x}+\mathbf{h})-\mathbf{f}(\mathbf{x})-\mathbf{A}\mathbf{h}|}{|\mathbf{h}|} = 0,$$

holds with $A = A_1$ and with $A = A_2$. Then prove that $A_1 = A_2$.

- 6. If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $B \in L(\mathbb{R}^m, \mathbb{R}^k)$, then prove that $||BA|| \leq ||B|| \, ||A||$.
- 7. If $y_1 = \cos x_1$, $y_2 = \sin x_1 \cos x_2$ and $y_3 = \sin x_1 \sin x_2 \cos x_3$, then find $\frac{\partial (y_1, y_2, y_3)}{\partial (x_1, x_2, x_3)}$.
- 8. Describe the working rule of Lagrange's multiplier method for a function of several variables.
- 9. Let ω be k-forms of class of \mathscr{C}'' in some open set $E \in \mathbb{R}^n$. Then prove that $d^2\omega = 0$. Here $d^2\omega$ means $d(d\omega)$.
- 10. Let ω and λ be k-forms and m-forms respectively of class $\mathscr C$ in some open set $E\in R^n$. Then prove

$$d(\omega \wedge \lambda) = (d\omega) \wedge \lambda + (-1)^k \omega \wedge d\lambda.$$

F-310

SECTION-D (Long Answer Type Questions)

5 each

Note:- Attempt all questions

1. State and prove Abel's Test.

Or

Let $f_n\{n=1,2,3\cdots\}$ be real functions defined on a set E in metric space and let the sequence $\{f_n\}$ converge uniformly to f on E. Let x_0 be a limit point of X, and suppose that

$$\lim_{x \to x_0} f_n(x) = A_n \quad (n = 1, 2, 3 \cdots)$$

then prove that

- (i) the sequence $\{A_n\}$ or real constants converges, and
- (ii) $\lim_{x\to x_0} f(x) = \lim_{n\to\infty} A_n$.
- 2. State and prove the Tauber's theorem on power series

Or

State and prove the Riemann's theorem on rearrangement of series.

- 3. Let Ω be the set of all invertible linear operator on \mathbb{R}^n , then prove that,
 - (a) If $A \in \Omega$, $B \in L(\mathbb{R}^n)$, and $||B A|| ||A^{-1}|| < 1$ then $B \in \Omega$.
 - (b) Ω is open subset in $L(\mathbb{R}^n)$ and the mapping $f:\Omega\to\Omega$ defined by $f(A)=A^{-1}$ for all $A\in\Omega$ is continuous.

Or

State and prove Taylor's theorem for a function of several variables.

4. Determine the maximum and minimum values of the function

$$f(x,y) = x^2 + y^2 + \frac{3\sqrt{3}}{2}xy$$

subject to the constraint $4x^2 + y^2 = 1$.

 O_1

Suppose T is a \mathscr{C}' – mapping of an open set $E \subset \mathbb{R}^n$ into an open set $V \subset \mathbb{R}^m$, ϕ is a k-surface in E, and ω is k-form in V. Then prove that

$$\int_{T\phi} \omega = \int_{\phi} \omega_T.$$