Roll No.

Total Printed Pages - 8

F-303

M.Sc. (FIRST SEMESTER) EXAMINATION, Dec. - Jan., 2021-22 (PHYSICS) PAPER THIRD

(ELECTRODYNAMICS AND PLASMA PHYSICS)

Time: Three Hours]

[Maximum Marks: 80

Note: Attempt all sections as directed

Section - A

(1 Mark each)

P.T.O.

(Objective/Multiple Choice Questions)

Note- Attempt all questions.

Choose the correct answer:

- 1. The power radiated by the dipole is

[2]

- 2. The instantaneous rate of radiation from the charge is -
 - (A) $\frac{1}{4\pi\varepsilon_0} \frac{2q^2a^2}{3c^3}$ (B) $\frac{1}{4\pi\varepsilon_0} \frac{qa}{c}$

(C) Zero

- (D) None of these
- 3. The field equation in coulomb gauge i.e. with div $\vec{A} = 0$ reduce to.

(A)
$$\Box^2 \vec{A} = -\mu \vec{\mathbf{J}}_T$$
 and $\nabla^2 \phi = \frac{9}{6}$

(B)
$$\Box^2 A = \mu J_T$$
 and $\nabla^2 \phi = +\frac{9}{6}$

(C)
$$\Box^2 A = -\mu \mathbf{J}_T$$
 and $\nabla^2 \phi = -\frac{9}{6}$

(D)
$$\Box^2 A = \mu \mathbf{J}_T$$
 and $\nabla^2 \phi = -\frac{9}{6}$

4. The field equation in Lorentz guage with div $A + \mu \varepsilon \frac{d\phi}{dt} = 0$ reduce to.

(A)
$$\Box^2 A = -\mu j$$
 and $\Box^2 \phi = -\frac{9}{6}$

(B)
$$\Box^2 A = \mu j$$
 and $\Box^2 \phi = -\frac{9}{6}$

(C)
$$\Box^2 A = -\mu j$$
 and $\Box^2 \phi = \frac{9}{6}$

(D)
$$\Box^2 A = \mu j$$
 and $\Box^2 \phi = \frac{9}{6}$

F-303

5. In an EM field which one of the following remains invariants under Lorentz transformation.

- (A) $\vec{E} \times \vec{B}$
- (B) $E^2 C^2B^2$
- (C) B²
- (D) E²

6. Which one is incorrect relation?

(A)
$$\vec{B} = \nabla \times A$$
 and $E = -\nabla \phi - \frac{\delta A}{\delta t}$

(B)
$$\nabla \cdot E = \frac{9}{6}$$
 and $\overrightarrow{\nabla} \times E = 0$

(C) $\nabla . B = 0$ and $\nabla \times B = \mu_0 j$

(D)
$$\vec{B} = \nabla \times A$$
 and $E = -\nabla \phi + \frac{\delta A}{\delta t}$

7. What is criteria for plasma

- (A) $N_D \ll L$
- (B) $\lambda_{\rm D} \ll L$
- (C) $\lambda_{D} \gg L$
- (D) $N_{D} = 0$

8. What is the relation between K and B in alfven wave?

- (A) K is perpendicualr to B
- (B) K is parallel to B
- (C) The direction of K and B are different
- Option (A) and (B)

9. Radiation due to the acceleration of a charge in coulomb field of another charge is called

- (A) Thermal Bremsstralung emission.
- (B) Thermal Bremasstralung absorption
- (C) Free emission
- (D) None of these

10. What is the unit of magnetic induction.

- (A) Coulmb/m³
- (B) Weber/m³
- (C) Weber/m²
- (D) Volt/m³

11. The electromagnetic radiation emitted when the charged particle are accelerated radially (v/a) is called.

- (A) Cyclotron Radiation
- (B) Synchrotron Radiation
- (C) Cherenkav Radiation
- (D) None of these

12. Total power radiated by an accelerated charge is equal to.

(A)
$$\frac{2}{3} \frac{e^2}{c^3} |\dot{v}|^2$$

(A)
$$\frac{2}{3} \frac{e^2}{c^3} |\dot{v}|^2$$
 (B) $\frac{2}{5} \frac{e^2}{c^3} |\dot{v}|$

(C)
$$\frac{2}{3} \frac{e^2}{c^3} | \dot{v}$$

(C)
$$\frac{2}{3} \frac{e^2}{c^3} |\dot{v}|$$
 (D) $\frac{2}{3} \frac{e}{c^3} |\dot{v}|^2$

13. The electric field \vec{E} is

- (A) Normal
- (B) Tangential
- (C) Opposite
- (D) Unrelated to the electric lines equipotential

14. The field of magnetic vector \vec{B} is always -

- (A) Irrotational
- (B) Solenoidal
- (C) Non-solenoidal
- (D) Both (A) and (C)

15. If \vec{E} is an electric field and \vec{B} is magnetic induction then the energy per unit area per unit time in electromagetic field is given by -

- (A) $\vec{E} \times \vec{B}$
- (B) $\vec{E} \cdot \vec{B}$
- (C) $E^2 + B^2$
- (D) $\frac{E}{B}$

16. What is retarted vector Potential

(A)
$$\vec{A}(r,t) = \frac{1}{4\pi \in_{0}} \int \frac{J(r^{1}t^{1})dv}{|\vec{r} - \vec{r}'|}$$

(B)
$$\vec{A}(r,t) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(r't')dv}{|\vec{r} - \vec{r}'|}$$

(C)
$$\phi(r,t) = \frac{1}{4\pi \in_{0}} \int \frac{\Im(r',t')dv}{|\vec{r}-\vec{r}'|}$$

(D)
$$\phi(r,t) = \frac{\mu_0}{4\pi} \int \frac{\langle (r',t') dv}{|\vec{r} - \vec{r}'|}$$

17. The direction of propogation of electromagnetic wave is given by

- (A) Vector \vec{E} (B)
- (B) Vector \vec{H}
- (C) Vector $\vec{E} \times \vec{H}$
- (D) $\vec{E} \times \vec{H}$

18. The potential (A and ϕ) at the position defined by the vector \vec{r} in uniform electric and magnetric field by

(A)
$$\phi = -\vec{E} \cdot \vec{r}$$
 and $\vec{A} = \frac{1}{2} (\vec{B} \times \vec{r})$

(B)
$$\phi = \vec{E} \cdot \vec{r}$$
 and $\vec{A} = \frac{1}{2} (\vec{B} \times \vec{r})$

- (C) $\phi = \vec{E} \cdot \vec{r}$ and $\vec{A} = (\vec{B} \times \vec{r})$
- (D) $\phi = -E \cdot \vec{r}$ and $\vec{A} = (\vec{B} \times \vec{r})$

F-303 P.T.O.

[8]

19. What is the correct formula for magnetic viscosity.

- (A) $\eta_m = \frac{1}{\mu_0 \sigma_0}$ (B) $\eta_m = \frac{c^2}{\epsilon}$
- (C) $\mu_0 \in = \frac{1}{c^2}$
- (D) None of the these

20. What is cyclotron frequency for a simple harmonic osullater

- (A) $\omega_c = \frac{q\beta}{2m}$ (B) $\omega_c \frac{q\beta}{m^2}$

(D) None of these

Section - B

(Very Short Answer Type Questions)

(2 marks each)

Note: Attempt all questions.

- 1. What is four-vectors?
- Define the thermal Bremsstralung.
- What is magnetic viscosty.
- 4. What do you understand by plasma oscillations?
- What is electric field drift?
- Write the formula for total power radiated by an accelerated charge.
- 7. What is Gauge transformation?
- 8. Define synchroton radiation.

P.T.O. F-303

Section - C

(3 Marks each)

(Short Answer Type Questions)

Note- Attempt all questions.

- 1. Derive the matrix representation of Lorentz transformation.
- 2. Explain Emission from single speed electron.
- 3. What is the fundamental equation of magnetohydrodynamics?
- 4. What is the criteria for plasma?
- 5. Explain spectrum of synchrotron radiation.
- 6. Expalin Scalar and vector potential.
- 7. Explain Radiation by moving charge.
- 8. Explain of distribution in frequency by accelerated charge?

Section - D

(Long Answer Type Questions)

(5 Marks each)

Answer any 4 questions. Note-

- 1. Explain covariance of electron dynamics.
- 2. Derive the Lienard-Wiechart potential and field for a point charge.
- 3. Explain "Debye shielding".
- 4. Explain Magneto-sonic and Alfen waves?
- 5. Explain Cherenkor radiation.