[2]

Roll No. Total Printed Pages - 11

F-308

M.Sc. (First Semester) EXAMINATION, Dec. - Jan., 2021-22 Paper Fourth

(Theory and Applications of spectroscopy - I)

Time : Three Hours [Maximum Marks : 80

Section - A

(Objective/Multiple Choice Questions)

(1 mark each)

Note: Attempt all questions.

- 1. Select the correct statement from the following option.
 - (A) Spectroscopic methods require less time and more amount of sample than classical methods.
 - (B) Spectroscopic methods require more time and more amount of sample than classical methods.
 - (C) Spectroscopic methods require less time and less amount of sample than classical methods.
 - (D) Spectroscopic methods require more time and less amount of sample than classical methods.

2. How many degrees of freedom does a chemical compound of N atoms have?

(A) 2N

(B) 2N + 1

(C) 3N

(D) 3N + 1

3. For a particular vibrational mode to appear in the Raman spectrum, what must change?

- (A) Frequency of radiation
- (B) Intensity of radiation
- (C) Molecule's shape
- (D) Molecule's polarizability

4. What is the order of decreasing vibrational frequency for C - Cl, C - Br, C - C, C - O and C - H?

- (A) C H, C C, C O, C CI, C Br
- (B) C CI, C Br, C C, C H, C O
- (C) C O, C H, C Br, C Cl, C C
- (D) C Br, C Cl, C C, C O, C H

5. Which of the following lines are most intense?

- (A) Stokes lines
- (B) Rayleigh-scattered lines
- (C) Anti-strokes lines
- (D) All have same intensity

- 6. For a particular vibrational mode to appear in the Raman specturm, What must change?
 - (A) Frequency of radiation
 - (B) Intensity of radiation
 - (C) Molecule's shape
 - (D) Molecule's polarizability
- 7. The elastic scattering of photons is called as
 - (A) Atmospheric scattering
 - (B) Rayleigh Scattering
 - (C) Conserved Scattering
 - (D) Raman Scattering
- 8. The number of vibrational modes for the acetaldehyde is:
 - (A) 23
 - (B) 24
 - (C) 15
 - (D) 9
- 9. The vibrational frequency of stretching vibration of the diatomic molecule in the above question will be:

P.T.O.

- (A) $v/2\pi = \sqrt{(\mu/k)}$
- (B) $v/2\pi = \sqrt{(k/\mu)}$
- (C) $v = 1/2\pi \sqrt{(\mu/k)}$
- (D) $v = 1/2\pi\sqrt{(k/\mu)}$

- 10. The solid samples are analysed in IR spectroscopic analysis by -
 - (A) Preparing a solution of analyte
 - (B) Using a mulling agent
 - (C) Pyrrolysis
 - (D) All of the above
- 11. Which of the following bending vibration takes place in different planes?
 - (A) Asymmetric stretching
 - (B) Rocking
 - (C) Scissoring
 - (D) Twisting
- 12. How many vibrational modes are possible for HCI?
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3
- 13. Which of the following vibrational mode of CO₂ is IR active?
 - (A) Symmetric stretching
 - (B) Asymmetric stretching
 - (C) Both A and B
 - (D) None

- 14. Which of the following comparison is correct for solvent shift on the $n \to \pi$ transition of acetone?
 - (A) $H_20=CH_30H=C_2H_50H=CHCI_3=C_6H_{14}$
 - (B) H₂0>CH₃0H>C₂H₅0H>CHCl₃>C_EH₁₄
 - (C) H₂0<CH₂0H<C₂H_E0H<CHCI₂<C_EH₁₄
 - (D) $H_20>CH_30H<C_2H_50H<CHCI_3<C_6H_{14}$
- 15. What is the correct order of λ_{max} for $n -> \pi$ * transition for the following three compounds?
 - (A) RCOOH > RCOOR' > RCONH,
 - (B) RCOOH = RCOOR' = RCONH
 - (C) RCOOH = RCOOR' < RCONH₃
 - (D) RCOOH = RCOOR' > RCONH,
- 16. The ultraviolet spectrum of benzonitrile shows a secondary absorption band at 271 nm. If a solution of benzonitrile in water, with a concentration of 1 x 10⁻⁴ molar solution is examined at 271 nm, what will be the absorbance reading (ε =1000) and what will be the intensity ratio, lo/l, respectively?
 - (A) 0.1, 1.26
 - (B) 0.2, 2.26
 - (C) 0.3, 3.26
 - (D) 0.4, 4.26

- 17. Why ketenes absorb in IR at a very high frequency (2150 cm⁻¹)?
 - (A) The inner C is sp hybridized
 - (B) The more s character in a bond, the stronger it is
 - (C) Inner C is sp² hybridized
 - (D) Inner C is sp³ hybridized
- 18. What is the number of vibrational degrees of freedom in C_eH_eCH₂?
 - (A) 39
 - (B) 15
 - (C) 18
 - (D) 40
- 19. Why Monomeric saturated aliphatic carboxylic acids show carbonyl stretching frequency near 1760 cm⁻¹, while saturated aliphatic ketones near 1720 cm⁻¹?
 - (A) Mesomeric (M) effect is dominant in acids over the inductive (1) effect
 - (B) 1 effect is dominant in carboxylic acids over the mesomeric effect
 - (C) 1 effect on ketones is dominant over the M effect
 - (D) M effect in ketones is dominant

- 20. The third and fourth line in the rotational Raman spectrum of CO are separate by 8cm⁻¹, The CO bond length is given by:
 - (A) $\sqrt{\frac{h}{16\pi^2\mu c}}$
 - (B) $\sqrt{\frac{3h}{16\pi^2\mu c}}$
 - (C) $\sqrt{\frac{5h}{32\pi^2\mu a}}$
 - (D) $\sqrt{\frac{h}{32\pi^2\mu c}}$

Section - B

(Very Short Answer Type Questions)

(2 marks each)

Note: Attempt any eight questions.

- 1. Write about the source of Raman spectroscopy.
- 2. Write about filters in Raman spectroscopy.
- 3. Write two applications of IR spectroscopy.
- 4. Define selection rules.
- 5. What is dispersion?
- 6. Write a note on Born Oppenheimer approximation.

- 7. What is electromagnetic radiation?
- 8. Write a note on the thermistors used in IR spectroscopy.
- 9. Why is CH4 Raman active?
- 10. Write a note on Vibrational coarse structure.

Section - C

(Short Answer Type Questions)

(3 marks each)

Note: Attempt any eight questions:

- Explain the different sampling techniques in IR spectroscopy
- 2. Explain factors determining the intensity of spectral lines.
- 3. Describe the brief rotational fine structure of electronicvibration transitions.
- 4. Write a short note on P,Q and R branches observed in IR spectrum of a diatomic molecule.
- 5. Discuss the principle of IR spectroscopy in molecular structure elucidation.
- 6. What are symmetric and asymmetric vibrations? Explain with the example of H₂O molecule.
- 7. Explain the activity of the following molecules with respect to IR and microwave specturm. H₂,HCI,CO₂, H₄&CH₃CI
- 8. The first line in the rotational spectrum of ¹²C¹⁶O molecule is 3.84235cm⁻¹. Find out the bond length of the molecule.

[10]

Section - D

(Long Answer Type Questions)

(5 marks each)

P.T.O.

Note: Attempt following questions.

- 1. (i) How does IR spectroscopy differ from Raman spectroscopy?
 - (ii) Write about the sample in microwave spectroscopy.

OR

- (i) Write about detectors in microwave spectroscopy.
- (ii) What is the condition for a molecule to be microwave active? Why?
- 2. (i) Why isoxygenmolecule does not microwave active?
 - (ii) Explain various advantages of Fourier transform spectroscopy.

OR

(i) Unkonwn molecule with molecular formula C₅H₁₀O. Which of these five molecules is it most likely to be?

Which of these molecules best corresponds to the IR spectrum below?

0.6 0.4 0.2 3000 2000 Wavenumber (cm-1)

0.8

(ii) Discuss the IR bands can be classified as strong(s), medium (m), or weak (w)

1000

- 3. (i) Calculate the wavenumber shift for the vibrational mode of Cl₂, given that the force constant k for the bond is 3.23 N cm⁻¹.
 - (ii) What advantages does Raman spectroscopy have for process monitoring?

OR

- (i) The equilibrium vibration frequency of the iodine molecule is 215 cm⁻¹ and the anharmonicity constant xeis 0.003. What is the intensity of the hot band for V = 1 to V = 2, realative to the fundamental V = 0 to V = 1, if the temperature is 300K?
- (ii) What is electromagnetic radiation?

- 4. (i) Why are Raman signals weak?
 - (ii) Why do the anti Stokes lines of carbon tetrachloride have the following order of intensity: 219 > 314 > 459 cm⁻¹?

OR

- (i) Which source is used in microwave spectrometer?
- (ii) The average spacing between successive rotating lines of CO₂ is 3.826 cm⁻¹. Determine the transition which gives most intense spectral line at 3.
- (iii) Explain various advantages of Fourier transform spectroscopy.