Roll No.

Total Printed Pages - 9

F-312

M.A./M.Sc. (First Semester) EXAMINATION, Dec. - Jan., 2021-22 MATHEMATICS

Paper Fourth
(Advanced Complex Analysis - I)

Time: Three Hours]

[Maximum Marks:80

[Minimum Pass marks:16

Note: Attempt all sections as directed.

Section - A

(Objective/Multiple Choice Questions)

(1 mark each)

Note: Attempt all questions.

Choose the correct answer:

- 1. The path of the difinite integral $\int_a^b f(z)dz$ is :
 - (A) The line segment joining the points z = a and z = b.
 - (B) Any curve joining the points z = a and z = b.
 - (C) Any circle such that the points z = a and z = b lie on it.
 - (D) None of these.

[2]

2. If f(z) is analytic in a simply connected domain D and C is any closed continuous rectifible curve in D, then

$$\int_{c} f(z)dz$$
 is equal to -

(A) 0

(B)

(C) C

- (D) D
- 3. For the function $f(z)=\tan\frac{1}{z},\ z=0$ is:
 - (A) Isolated essential singularities
 - (B) Removable singularity
 - (C) Non isolated essential singularity
 - (D) None of these
- 4. Poles of an analytic function are:
 - (A) Isolated
 - (B) Non isolated
 - (C) Removable
 - (D) None of these
- 5. If f(z) is analytic in a domain |z| < 1 and satisfies the conditions $f(z) \le 1$, f(0) = 0 then:

(A)
$$|f(z)| \ge z, |f'(0)| \le 1$$

(B)
$$|f(z)| \ge z, |f'(0)| \ge 1$$

(C)
$$|f(z)| \le z, |f'(0)| \le 1$$

(D) All of the above

F-312

- 6. One of the roots of the equation $Z^4 + Z^3 + 1 = 0$ lies in the:
 - (A) First Quadrant
 - (B) Second Quadrant
 - (C) First & Second Quadrant
 - (D) None of these
- 7. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^{2n-1}}{(2n-1)!}$ when $|z| < \infty$ represents.
 - (A) Sin z
 - (B) Cos z
 - (C) Log (1-z)
 - (D) None of these
- 8. At z = 1, the function $f(z) = \frac{z}{z^2 1}$ has a pole of order:
 - (A) One
 - (B) Two
 - (C) No pole exists
 - (D) None of these
- 9. If f (z) has an isolated singularity at $z = \infty$ then the residue at $z = \infty$ is
 - (A) $\frac{1}{2\pi i} \int_{c} f(z)dz$ (B) $\frac{-1}{2\pi i} \int_{c} f(z)dz$
 - (C) $\frac{\pm 1}{2\pi i} \int f(z) dz$ (D) None of these

Here C is any closed contour which encloses all the finite singularities of f (z) & integral is taken in positive direction.

- 10. The residue of $f(z) = \frac{e^z}{z^2(z^2 + a)}$ at z = 0 is-
 - (A) 0

- (C) $\frac{1}{9}$ (D) $\frac{3}{13}$
- 11. The number of poles of $f(z) = \frac{1}{z(z^2+3)(z^2+2)^3}$ inside the circle |z| = 1 are -
 - (A) 9

(B)

- (C) 2 (D) 1
- 12. The residue of $\frac{1}{(Z^2+1)^3}$ at z=i is given by -
 - (A) $\frac{3}{8i}$
 - (B) $\frac{3i}{8}$
 - (C) $\frac{3}{16i}$
 - (D) $\frac{3i}{16}$

- 13. A Transformation of the type $\omega = \alpha z + \beta$, where α and β are complex constant, is known as a:
 - (A) Translation
 - (B) Magnification
 - (C) Linear transformation
 - (D) Bilinear transformation
- 14. Under the transformation $\omega = \frac{1}{z}$, the image of the line v = 1/4 in z plane is:
 - (A) Circle $u^2 + v^2 = 4$
 - (B) Straight line
 - (C) Circle $u^2 + v^2 + 4v = 0$
 - (D) None of them
- 15. If $\omega = f(z)$ represents a conformal mapping of a domain D, then f(z) is:
 - (A) Analytic in D
 - (B) Not necessarily analytic in D
 - (C) Not analytic in D
 - (D) None of these

- 16. The fixed points of the bilinear transformation $\omega = \frac{z}{z-2}$ are:
 - (A) 0,0
 - (B) 0,3
 - (C) 0,2
 - (D) None of these
- 17. Let $\{fn\}$ be a sequence in H (G) and $f \in c(G,C)$ such that $fn \to f$. Then f is analytic and $f^{(k)}_n n \to f^{(k)}$ for each integer-
 - (A) $k \leq 1$

(B) k=0

(C) $k \ge 1$

- (D) None of these
- 18. If f is analytic in a domain D and is not constant then $\omega = f(z)$ maps open sets of D onto -
 - (A) Open sets in ω plane
 - (B) Closed set in ω plane
 - (C) (A) and (B) both
 - (D) None of these
- 19. The space H(G) of analytic functions of G is a:
 - (A) Metric space
 - (B) Complete metric space
 - (C) Not necessarily complete
 - (D) None of these

- 20. Let $F \subset C(G, \Omega)$ (the set of all continuous functions from
- G to $_\Omega$). If each sequence in F has a subsequence which converges to a function f in C (G, $_\Omega$). Then F is called -
 - (A) Totally bounded
 - (B) Compact
 - (C) Normal
 - (D) Locally bounded

Section - B

(Very Short Answer Type Questions)

(2 marks each)

Note: Attempt all questions.

- 1. Evaluate $\oint_c \frac{e^z}{(z-1)(Z-4)} dz$ where C is the circle |z| = 2 by using Cauchy's integral formula.
- 2. Write the statement of Morera's Theorem.
- 3. Write the statement of Minimum Modulus Principle.
- 4. Find the residue of $\frac{1}{(z^2+1)^3}$ at z=i
- 5. Define meromorphic function.
- 6. Consider the transformation $\omega = T(z) = \frac{z+1}{z+3} find T^{-1}(\omega)$.
- 7. Write the sufficient condition for $\omega = f(z)$ to represent a conformal mapping.
- 8. State the Riemann mapping theorem.

[8]

Section - C

(Short Answer Type Questions)

(3 marks each)

Note: Attempt all questions.

1. Prove that
$$\cos h\left(z + \frac{1}{z}\right) = a_0 + \sum_{n=1}^{\infty} a_n\left(z^n + \frac{1}{z^n}\right)$$

where
$$a_n = \frac{1}{2\pi} \int_0^{2\pi} \cos h(2\cos\theta) \cos n\theta \, d\theta$$

- 2. Prove that the value of the integral of $\frac{1}{Z}$ along a semi-circular arc |z| = a from a to a is $-\pi i$ or πi according as the arc lies above or below the real axis.
- 3. State the argument principle.
- 4. By the method of contour integration, show that $\int_{0}^{\infty} \frac{dx}{1+x^2} = \frac{\pi}{2}$
- 5. Consider the transformation $\omega = 3z$ and determine the region D' of the co-plane into which the triangular region D enclosed by the lines x = 0, y = 0, x + y = 1 in the z plane is mapped under this transformation.
- 6. Find the bilinear transformation which maps 0,1 and ∞ into 1, i and 1 respectively.
- 7. Show that if a set $F \subset C$ (G, Ω) is normal then \overline{F} is normal.
- 8. Show that $(C(G,\Omega), \emptyset)$ is a metric space.

F-312

F-312

Section - D

(Long Answer Type Questions)(5 mark each)

Note: Attempt all questions.

1. State and prove Cauchy's integral formula for higher order derivative.

OR

If f(z) is analytic within and on a closed contour C except at a finite number of poles and has no zero on

C, then prove that,
$$\frac{1}{2\pi i} \int_{c}^{f'(z)} dz = N - P$$
,

Where N is the number of zeros and P the number of poles inside C and a pole or zero of order m being counted m times.

2. By contour integration, show that:

$$\int_{0}^{\infty} \frac{\sin x}{x(x^{2} + a^{2})} dx = \frac{\pi}{2a^{2}} (1 - e^{-a}), \ (a > 0)$$

OR

State and prove Cauchy's Residue theorem.

3. Show that in the transformation $(\omega + 1)^2 = \frac{4}{z}$, the unit circle in the ω - plane corresponds to a parabola in z - plane and inside of the circle to the outside of the parabola.

OR

Find the bilinear transformations which maps the half plane $I(z) \ge 0$ onto the unit circular disc $|\omega| \le 1$.

4. State and prove Montel's theorem.

OR

State and prove open mapping theorem.