Roll No.

Total Printed Pages - 10

F-313

M.A./M.Sc. (First Semester) EXAMINATION, Dec. - Jan., 2021-22 MATHEMATICS

Paper Fifth

(Advanced Discrete Mathematics - I)

Time: Three Hours]

[Maximum Marks:80

[Minimum Pass marks:16

Note: Attempt all sections as directed.

Section - A

(Objective/Multiple Choice Questions)

(1 mark each)

Note: Attempt all questions.

Choose the correct answer:

- 1. The preposition $\sim (P \land (\sim P))$ is a: -
 - (A) Tautology
 - (B) Contradiction
 - (C) Both (A) and (B)
 - (D) None of these

[2]

- 2. Consider the statement $p \rightarrow q$, then $\sim q \rightarrow \sim p$ condition is called:
 - (A) Direct implication
 - (B) Inverse implication
 - (C) Contra positive implication
 - (D) Converse implication
- 3. Let g be a homomorphism from (X, \bullet) to (Y, *)., If $g: X \to Y$ is one to one, then g is called:
 - (A) Epimorphism
 - (B) Monomorphism
 - (C) Isomorphism
 - (D) Endomorphism
- 4. The negate of the statement $(\forall x(x \neq 1, x \neq 2))$ is:
 - (A) $\forall x(x^2 3x + 2 = 0)$
 - (B) $\forall x(x=1, x=2)$
 - (C) $\exists x(x=1, x=2)$
 - (D) $\exists x(x^2-3x+2=0)$
- 5. Which one is not correct?
 - (A) The algebric system $< S, \bullet >$ is called a semigroup, if the operation $\cdot \bullet \cdot$ is associative.
 - (B) An element 'x' in a semigroup < S, *> idempotent if $x^2=x$.
 - (C) Let < S, *> and $< T, \Delta >$ be any two semigroups. A map $f: S \to T$ s.t. for $a, b \in S$, $f(a*b) = f(a) \Delta f(b)$ is called a semigroup homomorphism.
 - (D) A semigroup < M, •> with an inverse element w.r.t. the operation is called monoid.

- 6. For any commutative monoid < M, *>, the set of idempotent elements of M form a
 - (A) Semi monoid
 - (B) Sub monoid
 - (C) Sub semigroup
 - (D) Semi group
- 7. The direct product of any two semigroup is a:
 - (A) Semi group
 - (B) Sub group
 - (C) Sub monoid
 - (D) Semi sub group
- 8. Let $\langle M, *, e \rangle$, and $\langle T, \Delta, e' \rangle$ be any two monoids, then a mapping f: $M \to T$, for $a, b \in M$, such that f $(a*b) = f(a) \Delta f(b)$ and f(e) = e' is called:
 - (A) Monoid Homomorphism
 - (B) Group Homomorphism
 - (C) Semigroup automorphism
 - (D) Semi group homomorphism
- 9. The Join irreducible element of a lattice L₁which immediately succeed 'O' are called

P.T.O.

- (A) Cover of an element
- (B) Atom
- (C) Meet irreducible
- (D) None of these

10. The maximal and minimal elements of poset are -

- (A) 3,5 are maximal and 2,6 are minimal
- (B) 3,2 are maximal and 1,6 are minimal
- (C) 3,5 are maximal and 1,6 are minimal
- (D) 3,4 are maximal and 1,6 are minimal
- 11. Choose the incorrect statement -
 - (A) Every chain is distributive lattice
 - (B) Every finite lattice is incomplete
 - (C) Two bounded lattices L_1 and L_2 are complemented iff L_1 x L_2 is complemented
 - (D) Every well ordered set is totaly and complete order.
- 12. Which of the poset show in the figure below are lattices

- (C) (iii)
- (D) (i), (ii), (iii) all

[6]

13. The conjuctive normal form of the function

$$(x+y')(x'+y')(x'+y)$$
 is:

(A) x'y'

(B) (x' + y')

(C) xy'

(D) (x+y')

14. Let $(L_1 \le)$ be a lattice, if for all a, b, c in L,

 $a \le c \Rightarrow a \lor (b \land c) = (a \lor b) \land c$. This type of lattice is said to be:

- (A) Bounded lattice
- (B) Complete lattice
- (C) Distributive lattice
- (D) Modular lattice

15. Which one is correct design of circuit for (x + y)(x' + zy')

(A) a'.b

 $(B,+,\bullet)$ is

- (B) (a+b')
- (C) 1
- (D) 0

17. If $L(G) = \{a^n b^n : n \ge 1\}$; then

- (A) L(G) is regular
- (B) L(G) is not regular
- (C) L (G) is reduced grammar
- (D) L(G) is non redundant

18. Grammar of Type - 1 is often called:

- (A) Context free grammar
- (B) Regular grammar
- (C) Context sensitive grammar
- (D) Regular Expression

19. The principle that shows whether a language is regular or non regular is:

- (A) Kleen's theorem
- (B) Lagrange's theorem
- (C) Schwarz's Lemma
- (D) Pumping Lemma

- 20. Which is not correct in regular expression-
 - (A) R * R * = R
 - (B) $RR^* = R * R$
 - (C) $\phi R = R\phi = \phi$
 - (D) $\varepsilon + RR^* = R^* = \varepsilon + R^*R$

Section - B

(Very short answer type questions)

(1½ marks each)

Note: Attempt all questions. Answer in 2 - 3 sentences.

- 1. Construct the truth table for $(P \lor Q) \lor \sim P$.
- 2. Define predicates.
- 3. Define sub semigroup.
- 4. Explain congruence relation.
- 5. Draw Hasse diagrams of lattice with five elements.
- 6. Show that every finite lattice is bounded.
- 7. Design of circuit for (xy+z)(x'+zy').
- 8. Write the function (x + x'y) in conjuctive normal form.
- 9. Define regular grammar.
- 10. Write statement of Kneels Theorem.

Section - C

(Short Answer Type Questions)

(2 ½ marks each)

Note: Attempt all questions. Answer in less than 75 words.

- 1. Define Quantifiers. Explain types of quantifiers.
- 2. Show that the following argument is valid.

$$\frac{p \vee q}{\sim \frac{p}{q}}$$

- 3. Show that the direct product of any two semigroups is a semigroup.
- 4. Prove that any commutative monoid < M,*>, the set of idempotent elements of M forms a submonoid.
- 5. Show that Every chain is distributive lattice.
- 6. Show that in Boolean algebra the complement of each element if exist is unique.
- 7. Find complete disjunctive normal form in three variables, and show that its value is 1.
- 8. Draw a circuit for the following Boolean function and replace it by a simpler one:

$$F(x,y,z) = x.z + [y.(y'+z).(x'+x.z')]$$

- 9. Explain polish notations.
- 10. Explain Regular set.

Section - D

(Long Answer Type Questions)

(4 marks each)

Note: Attempt all questions. Answer using less than 150 words for each.

1. Explain logical equivalence. Show that the statement is logically equivalent. $p \Rightarrow (q \Rightarrow r) \equiv (p \land q) \Rightarrow r$

OR

Test the validity of the argument: If 8 is even then 2 does not divide 9. Either 7 is not prime or 2 divides 9. But 7 is prime, therefore, 8 is odd.

2. Prove that $\langle M, *, e \rangle$ and $\langle T, \Delta, e \rangle$ be two monoids with identities e and e' if f is an onto mapping from M to T i.e. $f: M \to T$ is an isomorphism. Then f(e) = e'

OR

Show that Let < M, *> be monoid then there exists a subset $T \subset M^m$, such that < M, *> is isomorphism to the monoid $< T, \bullet >$

- 3. Define the terms and give examples:
 - (i) Join irreducible element of a lattice.
 - (ii) Complemented lattices.

OR

Show that two bounded lattices L_1 and L_2 are complemented iff $L_1 \times L_2$ is complemented.

[10]

4. What is minimization of Boolean function? Explain Karnaugh method to represent Boolean function in one, two and three variable.

OR

Simplify the following Boolean expression

$$E(x_1, x_2, x_3) = x_1 x_2 x_3 + x_1 x_2 x_3 + x_1 x_2 x_3 + x_1 x_2 x_3.$$

5. Explain Grammar and their types.

OR

State and prove pumping lemma.