[2]

Roll No.

Total Printed Pages - 3

# F-3955

# B.C.A. (PART II) Examination, 2022 (Old Course) Paper Second DIFFERENTIATION AND INTEGRATION

(201)

Time : Three Hours]

[Maximum Marks: 50

Note: Attempt any two parts from each question. All questions carry equal marks.

### Unit - I

- 1. (a) State and prove Leibnitz's theorem.
  - (b) If  $a,b \in R$  such that  $a \neq b$ , then show that there exists a real number  $c \in (a,b)$  such that  $a^2 + ab + b^2 = 3c^2$
  - (c) Expand  $\log \sin x$  in powers of (x-2).

### Unit - II

- 2. (a) Prove that radius of curvature at the point (x, y) of the catenary  $y = c \cosh\left(\frac{x}{c}\right)$  is  $\frac{y^2}{c}$ .
  - (b) Find Points of inflexion of the curve  $y = 3x^3 4x^2 + 1$ .
  - (c) Trace the curve  $r = a (1 + \cos \theta)$

### Unit - III

3. (a) If  $u = x^2 + y^2 + z^2$ , then prove that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 2u$$

- (b) Find the directional derivative of  $\Phi = x^2 yz + 4xz^2$  in the direction of the vector  $2\hat{i} \hat{j} 2\hat{k}$  at the point (1,-2,-1).
- (c) If u = x + y z, v = x y + zand  $w = x^2 + y^2 + z^2 - 2xyz$ , then show that  $\partial(u, v, w)$

$$\frac{\partial(u, v, w)}{\partial(x, y, z)} = 0$$

## Unit - IV

- 4. (a) Evaluate  $\int \frac{xdx}{(x-1)(x-2)(x-3)}$ 
  - (b) Find the value of  $\int_{1}^{3} \frac{\cos(\log x)}{x} dx$
  - (c) Prove that  $\lim_{n \to \infty} \left( \frac{n^n}{n!} \right)^{1/n} = e$

- 5. (a) Evaluate  $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$ .
  - (b) Change the order of integration in the following

integral 
$$\int_{0}^{a} \int_{\sqrt{ax-x^2}}^{\sqrt{ax}} V(x,y) dx dy$$

(c) Find the area of the common region of the two curves  $y^2 = ax$  and  $x^2 + y^2 = 4ax$ .