Total Printed Pages - 8

F - 512

M.Sc.(Second Semester) EXAMINATION, May-June, 2022 PHYSICS

Paper Second (Statistical Mechanics)

Time : Three Hours] [Maximum Marks : 80

Note: Attempt all sections as directed.

Section - A

(Objective/Multiple Choice Questions)

(1 mark each)

Note: Attempt all questions.

Choose the correct answer:

- 1. In a canonical ensemble, the quantities same for each system is:
 - (A) Temperature, Energy and the number of particles
 - (B) Temperature, Volume and the number of particles
 - (C) Energy, Volume and the number of particles
 - (D) All of the above

[2]

- 2. Five particles are distributed in two phase cells. Then number of macrostates is :
 - (A) 10
 - (B) 6
 - (C) $\frac{5}{2}$
 - (D) 32
- 3. In a classical micro-canonical ensemble for a system of N interacting particles, the fundamental volume in phase space which is regarded as equivalent to one microstate is:
 - (A) h^{3N}
 - (B) h^{2N}
 - (C) h^N
 - (D) h

h is Planck's constant

- 4. The condition of statistical equilibrium is:
 - (A) Equality of temperatures
 - (B) Equality of pressures
 - (C) Equality of chemical potentials
 - (D) Equality of all above
- 5. The classical partition function z gives the:
 - (A) Sum of states of the system
 - (B) Sum of energy of the system
 - (C) Sum of momentum of the system

(D) None of the above

6. For a system with a large value of degree of freedom, the fluctuation is:-

- (A) Large
- (B) Negligible
- (C) Zero
- (D) None of the above

7. The relation between entropy and probability is:-

- (A) $s = k \log \Omega$
- (B) $s = k/log \Omega$
- (C) $\Omega = k \log s$
- (D) $\Omega = k/\log s$

8. The partition function is defined as z =

(A)
$$\sum_{i} g_{i} e^{-E_{i}/kT}$$

(B)
$$\sum_{i} g_{i} e^{\frac{E_{i}}{kT}}$$

(A)
$$\sum_{i} g_{i}e^{-E_{i}/kT}$$
(B)
$$\sum_{i} g_{i}e^{E_{i}/kT}$$
(C)
$$\sum_{i} \frac{g_{i}}{n_{i}!}e^{-E_{i}/kT}$$

(D) $\sum_{i} \frac{g_{i}}{n_{i}!} e^{\frac{E_{i}}{kT}}$

9. Bose-Einstein statistics applied to:-

- (A) electrons
- (B) molecules
- (C) photons
- (D) All above

10. Which of the following is a boson:-

- (A) α particle
- (B) neutron
- (C) positron
- (D) proton

11. In quantum statistics the particles are:-

- (A) identical and distinguishable
- (B) molecules only
- (C) identical and indistinguishable
- (D) Photons only

12. For strongly degenerate fermigas the specific heat:-

- (A) is proportional to absolute temperature
- (B) is proportional to square of absolute temperature

- (C) is proportional to cube of absolute temperature
- (D) is independent of temperature
- 13. For Bose gas, the chemical potential μ is always:-
 - (A) Positive
 - (B) Zero
 - (C) Negative
 - (D) None of the above
- 14. The satisfactory explanation of Brownian motion was given by:
 - (A) Maxwell
 - (B) Brown
 - (C) Einstein
 - (D) Langevin
- 15. The diffusion coefficient D is:-
 - (A) Proportional to P
 - (B) Inversely proportional to P
 - (C) Does not depend on P
 - (D) None of the above
- 16. Helium II is a:-
 - (A) Conductor
 - (B) Semiconductor

- (C) Insulator
- (D) Superconductor
- 17. The Chandrashekhar limit is:-
 - (A) 1.2 mass of sun
 - (B) 1.6 mass of sun
 - (C) 1.4 mass of sun
 - (D) 2.3 mass of sun
- 18. According to Boltzmann canonical distribution law:-
 - (A) low energy cells contain more particles
 - (B) high energy cells contain more particles
 - (C) zero energy molecules are zero
 - (D) None of the above
- 19. Transition from non-ferromagnetic state to ferromagnetic state is a phase transition of:-
 - (A) First order
 - (B) Second order
 - (C) Zero order
 - (D) Not a phase transition
- 20. Which thermometer can be used to measure temperatures below 1° K:-
 - (A) Vapour pressure thermometer
 - (B) Alcohol thermometer

P.T.O.

[8]

- (C) Thermocouple thermometer
- (D) Magnetic thermometer

Section - B

(Very Short Answer Type Questions)

(2 marks each)

Note: Attempt all questions.

1. Explain contact between statistics and thermodynamics.

(b)

- 2. Define the terms with examples:
 - (a) Macrostate

- Microstates
- 3. Define grand canonical ensemble.
- 4. Explain the partition function for canonical ensemble.
- 5. Explain density matrix.
- 6. What do you mean by phase transition?
- 7. Draw the diagram of the cluster expansion for N = 6 particles for a classical gas.
- 8. What do you mean by fermi energy?

Section - C

(Short Answer Type Questions)

(3 marks each)

Note: Attempt all questions.

- 1. Write the physical significance of $\,\Omega\,$ (N, V, E) in classical gas.
- 2. What do you mean by Gibbs paradox?

F-512 P.T.O.

- 3. Explain the energy density fluctuation.
- 4. Define canonical ensemble.
- 5. Write the basic postulates of Bose- Einstein statistics.
- 6. Explain the thermodynamic behaviour of ideal Fermi gas.
- 7. State the properties of liquid Helium II.
- 8. Discuss what is meant by fluctuation in thermodynamical quantities.

Section - D

(Long Answer Type Questions)

(5 marks each)

Note: Attempt any four questions.

- Establish the connection between statistical and thermodynamical quantities. Derive expression for Helmholtz free energy, Enthalpy and Gibbs' free energy.
- 2. Define partition function and derive it for a system represented by a grand canonical ensemble.
- 3. Discuss the phenomenon of Bose-Einstein condensation.
- 4. Explain: (a) Liouville's theorem (b) Virial equation of state.
- 5. What are Fermions? Derive the Fermi-Dirac distribution formula. Discuss one application for this distribution.
- 6. Explain in brief the Einstein-Smoluchowski theory of Brownian motion.
- 7. Explain theory of white dwarf stars.
- 8. Give an account of Bose Einstein statistics and discuss its application to liquid Helium II.

F-512