Roll No.

Total Printed Pages -11

F - 520

M.A./M.Sc.(Second Semester) EXAMINATION, May - June, 2022 MATHEMATICS

Paper Second (Real Analysis - II)

Time : Three Hours] [Maximum Marks:80

Note: Attempt all the sections as directed.

(Section - A)

(Objective/Multiple Choice Questions)

(1 mark each)

Note: Attempt all the questions.

Choose the correct answer.

[2]

1. Let f be a bounded function and α a monotonically increasing function on [a, b] then .

(A)
$$\int_{-a}^{b} f d\alpha = \int_{a}^{\overline{b}} f d\alpha$$

(B)
$$\int_{\overline{a}}^{b} f d\alpha \leq \int_{a}^{\overline{b}} f d\alpha$$

(C)
$$\int_{\overline{a}}^{b} f d\alpha \ge \int_{a}^{\overline{b}} f d\alpha$$

- (D) None of the above
- 2. Statement I Let f be continuous and be α monotonically increasing on [a, b] then $f \in R(\alpha)$ on [a, b].

Statement - II Let f be monotonic on [a, b] then $f \in R(\alpha)$

- (A) Only statement I is true
- (B) Only statement II is true
- (C) Both statement I & II is true
- (D) Both statement I & II is false

3. Let
$$f(x) = x, \alpha(x) = x^2$$
. The value of $RS \int_{0}^{1} x dx^2$ is

- (A) $\frac{1}{2}$
- (B) $\frac{2}{3}$
- (C) 1
- (D) 0

4. Let f be a Riemann Integral on [a, b] is $f \in R[a, b]$ and let there be differentiable function F on [a, b] such that F = f

then
$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

- (A) Fundamental theorem of calculus
- (B) Intergration thoerem
- (C) Differentiation theorem
- (D) None of the above
- 5. If E is Q set for which m is defined and if E + y is the set $\{x+y: x \in E\}$ where y is any fixed number then m(E+y)=m(E). This property is known as:
 - (A) Rotational invarience
 - (B) Translation invarience
 - (C) Countable addivity
 - (D) None of the above
- 6. Which of the following is true
 - (A) The outer measure of an interval is its length
 - (B) The outer measure of an interval is its breath.
 - (C) The outer measure of an interval is either length or breath
 - (D) The outer measure of an interval is neither length nor breath.

P.T.O.

7. A Borel measurable set is measurable is.

[4]

- (A) Lebesgue measurable
- B) Borel Measurable
- (C) Regular measurable
- (D) None of the above
- 8. Any set with the outer measure different from zero is:
 - (A) Countable
 - (B) Uncountable
 - (C) Measurable
 - D) Non Measurable
- 9. Let ϕ and Ψ be simple function which vanish outside a set of finite measure then:

(A)
$$\int (a \phi + b \Psi) = a \int \phi + b \int \Psi \forall a, b \in R$$

(B)
$$\int (a \phi + b \Psi) \le a \int \phi + b \int \Psi \forall a, b \in R$$

(C)
$$\int (a \phi + b \Psi) \ge a \int \phi + b \int \Psi \forall a, b \in R$$

(D)
$$\int (a \phi + b \Psi) \neq a \int \phi + b \int \Psi \forall a, b \in R$$

- 10. A simple function is_____
 - (A) Characteristic function
 - (B) Measurable function
 - (C) Borel function
 - D) None of them

[6]

11. Let f be an integrable function on [a, b] if

$$\int_{a}^{x} f(t) dt = 0 \text{ for all } x \in [a, b] \text{ then}$$

- (A) f' = 0 a.e in [a,b]
- (B) $f' \neq 0$ a.e in [a,b]
- (C) f = 0 a.e in [a,b]
- (D) $f \neq 0$ a.e in [a,b]

12. If a function f is a function of bounded variation then it is:

- (A) Bounded
- (B) Measurable
- (C) Unbounded
- (D) None of the above

13. Every obsolutely continuous function is of:

- (A) Bounded variation
- (B) Continuous variation
- (C) Countably infinite
- (D) None of the above

14. If the derivatives of two absolutely continuous functions are equivalent then the function differ by a

- (A) Derivative
- (B) Constant
- (C) Integrable
- (D) Closed

15. If *f* is an absolutely continuous monotone function on [a, b] and E a set of measure zero then

- (A) f(E) has an infinite measure
- (B) f(E) has finite measure
- (C) f(E) has measure zero
- (D) None of the above

16. If F'(x) be an indefinite integral of a bounded measurable function f(x) then

- (A) F'(x) < f(x) almost every where
- (B) F'(x) > f(x) almost every where
- (C) F'(x) = f(x) almost every where
- (D) $F'(x) \neq f(x)$ almost every where

17. If $f \in L^P[a,b]$ and $g \le f$ then

- (A) $g \in L^P[a,b]$
- (B) $g \notin L^p[a,b]$
- (C) $(f+g) \in L^p[a,b]$
- (D) $(f+g) \notin L^p[a,b]$

P.T.O.

F - 520

[8]

18. Let f be a real valued and measuable function on a set X with $\mu(x) > 0$. A real number M is said to an essential bounded for the function f if

- (A) $|f(x)| \le Ma.e \text{ on } X$
- (B) $|f(x)| \ge Ma.e \text{ on } X$
- (C) |f(x)| = Ma.e on X
- (D) $|f(x)| \neq Ma.e \ on X$
- 19. Let $\{f_n\}$ be a sequence of measurable function that converges in measure to f for some $f \in R$ then there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ which converges to f a.e on measure space X.
 - (A) Lebesgue theorem
 - (B) Convergence theorem
 - (C) Riesz theorem
 - (D) None of the above
- 20. Let $\{f_n\}$ be a sequence of function in L^P, $1 \le p < \infty$ which converges almost every where to a function f in L^Pthen $\{f_n\}$ converges to f in L^P if and only if
 - $(A) \quad \|f_n\|_p \to \|f\|_p$
 - (B) $\|f_n\|_p \rightarrow \|f\|_p$
 - (C) $\|f_n\|_p 0$
 - (D) None of the above

Section - B

(Very Short Answer Type Questions)

(1½ marks each)

Note: Attempt all questions.

- 1. State fundamental theorem of calculus.
- 2. Define Rectifiable curve
- 3. Define Borel Measurable set
- 4. Give two examples of Borel set
- 5. State Fatou's Lemma.
- 6. State Lebesgue dominated convergence theorem
- 7. Define Integrable function.
- 8. Define Absolutely continuous function
- 9. Give an example which is continuous but not absolutely continuous.
- 10. Define a function of Bounded Variation

Section - C

(Short Answer Type Questions)

(21/2 marks each)

Note: Attempt all questions.

1. Let f be continuous and α be monotonically increasing on [a, b] then $f \in R(\alpha)$ on [a, b]

2. Let $f, \alpha = [a,b] \to R$ be bounded function and α be monotonic increasing. If P is any partition of interval [a, b] then $L(P, f, \alpha) \le U(P, f, \alpha)$.

- 3. Prove that the union of a finite number of measurable set is measurable.
- 4. Prove that a continuous function define on a measurable set is measurable.
- 5. Prove that if f is a function of bounded variation on [a, b] then it is measurable.
- 6. Prove that if f is absolutely continuous on [a, b] and f'=0 ae then f is constant.
- 7. Prove that the intersection of two outer measurable set is outer measurable.
- 8. If $f \in L^p[a, b], b > 1$ and $f \in L[a, b]$.
- 9. If $A \in A$ where A is set of Algebra then prove that $\mu^*(A) = \mu(A)$
- 10. Let $f \in L(\mu)$ on E then $|f| \in L(\mu)$ on E and $\left| \int_E f \, d\mu \right| \leq \int_E |f| \, d\mu$

Section - D

(Long Answer Type Questions)

(4 marks each)

Note: Attempt all questions.

1. Let
$$f \in R$$
 on $[a,b]$ for $a \le x \le b$ put $F(x) = \int_a^x f(t)dt$.

Then prove that F is continuous on [a, b]. Further more if f is continuous at a point \mathbf{x}_0 of [a, b] then F is differentiable at \mathbf{x}_0 and $F'(\mathbf{x}_0) = f(\mathbf{x}_0)$

OR

Let α be a monotonically increasing function on [a, b] and $\alpha' \in R[a,b]$. Let F be a bounded real function on [a, b] then $f \in R(\alpha)$ if and only if $f\alpha' \in R[a,b]$. In that case

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x) \alpha'(x) dx$$

2. State and prove Jordan decomposition theorem

OR

Let $\{f_{\it n}\}$ be a sequence of non-negetive measurable function and $f_{\it n}\to f$ a.e on E then prove

that
$$\int_{E} f \leq \lim_{n \to \infty} \int_{E} f_{n}$$

[11]

3. Let f be a bounded function defined on [a, b] if f is Riemann integrable on [a, b] then it is Lebesgue inte-

grable on [a, b] and
$$R.\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

OR

Let the set E_1 , E_2 ,....., E_n be disjoint measurable then prove that $\mu * \left[A \cap (\bigcup_{i=1}^n E_1^{\cdot}) \right] = \sum_{i=1}^n \mu * (A_n, E_i)$ holds for every subset A of X.

4. State and prove Lebesgue differentation theorem.

OR

Prove that a function f is of bounded variation on [a, b] if and only if f is the difference of two monotone real valued function on [a, b].

5. State and prove Minkowski's inequality.

OR

Prove that L^P spaces are complete.